Advertisements
Advertisements
प्रश्न
Form the differential equation representing the family of curves `y2 = m(a2 - x2) by eliminating the arbitrary constants 'm' and 'a'.
उत्तर
The equation y2 = m(a2 - x2) where m and a are arbitrary constants.
y2 = m(a2 - x2) ......(i)
Differentiate (i) w.r.t.x.
`2"y"(d"y")/(d"x")` = -2mx ...(ii)
⇒ -2m = `2 ("y")/("x") (d"y")/(d"x")`
Differentiate (ii) w.r.t.x.
`2["y" (d^2"y")/(d"x"^2) + ((d"y")/(d"x"))^2] ` = -2m .....(iii)
From (ii) and (iii), we get
`2["y" (d^2"y")/(d"x"^2) + ((d"y")/(d"x"))^2] = 2 ("y")/("x") (d"y")/(d"x")`
`"y"(d^2"y")/(d"x"^2) + ((d"y")/(d"x"))^2-("y"/"x")(d"y")/(d"x")` = 0
therefore the required differential equation is `"y"(d^2"y")/(d"x"^2) + ((d"y")/(d"x"))^2-("y"/"x")(d"y")/(d"x")` = 0
संबंधित प्रश्न
Form the differential equation of the family of circles touching the y-axis at the origin.
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
Form the differential equation of the family of ellipses having foci on y-axis and centre at origin.
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at origin.
Form the differential equation representing the family of curves given by (x – a)2 + 2y2 = a2, where a is an arbitrary constant.
For the curve y = 5x – 2x3, if x increases at the rate of 2 units/sec, then find the rate of change of the slope of the curve when x = 3
Form the differential equation of the family of curves represented by y2 = (x − c)3.
Form the differential equation corresponding to y = emx by eliminating m.
Form the differential equation of the family of curves represented by the equation (a being the parameter):
(x − a)2 + 2y2 = a2
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 − y2 = a2
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4ax
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = ax3
Find one-parameter families of solution curves of the following differential equation:-
\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x}\]
Find one-parameter families of solution curves of the following differential equation:-
\[x\frac{dy}{dx} + y = x^4\]
Find one-parameter families of solution curves of the following differential equation:-
\[\left( x \log x \right)\frac{dy}{dx} + y = \log x\]
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} + y \cos x = e^{\sin x} \cos x\]
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} \cos^2 x = \tan x - y\]
Find one-parameter families of solution curves of the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 \log x\]
The family of curves in which the sub tangent at any point of a curve is double the abscissae, is given by
Form the differential equation of the family of ellipses having foci on y-axis and centre at the origin.
Find the differential equation of the family of lines through the origin.
The differential equation representing the family of curves y = A sinx + B cosx is ______.
Find the equation of a curve passing through origin and satisfying the differential equation `(1 + x^2) "dy"/"dx" + 2xy` = 4x2
Find the equation of a curve passing through origin if the slope of the tangent to the curve at any point (x, y) is equal to the square of the difference of the abcissa and ordinate of the point.
Differential equation representing the family of curves y = ex (Acosx + Bsinx) is `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + 2y` = 0
Find the equation of the curve at every point of which the tangent line has a slope of 2x:
Form the differential equation of the family of hyperbola having foci on x-axis and centre at origin.