हिंदी

Find the equation of a curve passing through origin if the slope of the tangent to the curve at any point (x, y) is equal to the square of the difference of the abcissa and ordinate of the point. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of a curve passing through origin if the slope of the tangent to the curve at any point (x, y) is equal to the square of the difference of the abcissa and ordinate of the point.

योग

उत्तर

Here, slope of the tangent of the curve = `("d"y)/("d"x)` and the difference between the abscissa and ordinate = x – y.

∴ As per the condition, `("d"y)/("d"x) = (x - y)^2`

Put x – y = v

`1 - ("d"y)/("d"x) = "dv"/("d"x)`

∴ `("d"y)/("d"x) = 1 - "dv"/"dx"`

∴ The equation becomes `1 - "dv"/"dx" = "v"^2`

⇒ `"dv"/"dx" = 1 - "v"^2`

⇒ `"dv"/(1 - "v"^2)` = dx

Integrating both sides, we get

`int "dv"/(1 - "v"^2) = int "d"x`

⇒ `1/2 log |(1 + "v")/(1 - "v")|` = x + c

⇒ `1/2 log|(1 + x - y)/(1 - x + y)|` = x + c  ......(1)

Since, the curve is passing through (0, 0)

Then `1/2 log|(1 + 0 - 0)/(1 - 0 + 0)|` = 0 + c

⇒ c = 0

∴ On putting c = 0 in equation (1) we get

`1/2 log |(1 + x - y)/(1 - x + y)|` = x

⇒ `log|(1 + x - y)/(1 - x + y)|` = 2x

∴ `(1 + x - y)/(1 - x + y)|` = e2x

⇒  (1 + x – y) = e2x (1 – x + y) 

Hence, the required equation is (1 + x – y) = e2x (1 – x + y).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Exercise [पृष्ठ १९५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 9 Differential Equations
Exercise | Q 31 | पृष्ठ १९५

संबंधित प्रश्न

Form the differential equation of the family of circles touching the y-axis at the origin.


Form the differential equation of the family of circles having centre on y-axis and radius 3 units.

 

Which of the following differential equation has y = x as one of its particular solution?

A. `(d^2y)/(dx^2) - x^2 (dy)/(dx) + xy = x`

B. `(d^2y)/(dx^2) + x dy/dx + xy = x`

C. `(d^2y)/(dx^2) - x^2 dy/dx + xy = 0`

D. `(d^2y)/(dx^2) + x dy/dx + xy = 0`

 

 

 


For the curve y = 5x – 2x3, if x increases at the rate of 2 units/sec, then find the rate of change of the slope of the curve when x = 3


Show that the family of curves for which `dy/dx = (x^2+y^2)/(2x^2)` is given by  x2 - y2 = cx


Form the differential equation corresponding to y = emx by eliminating m.


Form the differential equation from the following primitive where constants are arbitrary:
y2 = 4ax


Form the differential equation from the following primitive where constants are arbitrary:
y = cx + 2c2 + c3


Form the differential equation from the following primitive where constants are arbitrary:
xy = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 − y2 = a2


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} + 3y = e^{mx}\], m is a given real number.


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x}\]


Find one-parameter families of solution curves of the following differential equation:-

\[\left( x \log x \right)\frac{dy}{dx} + y = \log x\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} \cos^2 x = \tan x - y\]


Find one-parameter families of solution curves of the following differential equation:-

\[x \log x\frac{dy}{dx} + y = 2 \log x\]


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 \log x\]


The differential equation which represents the family of curves y = eCx is


The family of curves in which the sub tangent at any point of a curve is double the abscissae, is given by


Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Form the differential equation representing the family of curves `y2 = m(a2 - x2) by eliminating the arbitrary constants 'm' and 'a'. 


Form the differential equation representing the family of curves y = e2x (a + bx), where 'a' and 'b' are arbitrary constants.


Find the differential equation of the family of curves y = Ae2x + B.e–2x.


Find the equation of a curve passing through the point (1, 1) if the perpendicular distance of the origin from the normal at any point P(x, y) of the curve is equal to the distance of P from the x-axis.


Find the differential equation of system of concentric circles with centre (1, 2).


Family y = Ax + A3 of curves will correspond to a differential equation of order ______.


The differential equation representing the family of circles x2 + (y – a)2 = a2 will be of order two.


From the differential equation of the family of circles touching the y-axis at origin


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×