Advertisements
Advertisements
प्रश्न
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
उत्तर
The equation of the family of hyperbolas having centre at the origin and foci on the X-axis is given by
\[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 . . . . . . . . \left( 1 \right)\]
Here, a and b are parameters.
Since this equation contains two parameters, so we get a second order differential equation.
Differentiating (1) with respect to x, we get
\[\frac{2x}{a^2} - \frac{2y}{b^2}y' = 0 . . . . . . . . \left( 2 \right)\]
Differentiating (2) with respect to x, we get
\[\frac{2}{a^2} - \frac{2}{b^2}\left[ yy'' + \left( y' \right)^2 \right] = 0\]
\[ \Rightarrow \frac{1}{a^2} = \frac{1}{b^2}\left[ yy'' + \left( y' \right)^2 \right]\]
\[ \Rightarrow \frac{b^2}{a^2} = \left[ yy'' + \left( y' \right)^2 \right] . . . . . . . . (3)\]
From (2), we get
\[\frac{2x}{a^2} = \frac{2y}{b^2}y'\]
\[ \Rightarrow \frac{b^2}{a^2} = \frac{y}{x}y' . . . . . . . . (4)\]
From (3) and (4), we get
\[\frac{y}{x}y' = \left[ yy'' + \left( y' \right)^2 \right]\]
\[ \Rightarrow yy' = xyy'' + x \left( y' \right)^2 \]
\[\text{Hence, }xyy'' + x \left( y' \right)^2 - yy' = 0\text{ is the required differential equation.}\]
APPEARS IN
संबंधित प्रश्न
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at origin.
Which of the following differential equations has y = c1 ex + c2 e–x as the general solution?
(A) `(d^2y)/(dx^2) + y = 0`
(B) `(d^2y)/(dx^2) - y = 0`
(C) `(d^2y)/(dx^2) + 1 = 0`
(D) `(d^2y)/(dx^2) - 1 = 0`
Form the differential equation representing the family of curves given by (x – a)2 + 2y2 = a2, where a is an arbitrary constant.
Form the differential equation of the family of circles in the first quadrant which touch the coordinate axes.
Form the differential equation of the family of curves represented by y2 = (x − c)3.
Form the differential equation from the following primitive where constants are arbitrary:
xy = a2
Find the differential equation of the family of curves, x = A cos nt + B sin nt, where A and B are arbitrary constants.
Form the differential equation corresponding to (x − a)2 + (y − b)2 = r2 by eliminating a and b.
Form the differential equation of the family of curves represented by the equation (a being the parameter):
(x − a)2 + 2y2 = a2
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4ax
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Show that y = bex + ce2x is a solution of the differential equation, \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0\]
Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x\]
For the differential equation xy \[\frac{dy}{dx}\] = (x + 2) (y + 2). Find the solution curve passing through the point (1, −1).
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} - y = \cos 2x\]
Find one-parameter families of solution curves of the following differential equation:-
\[x\frac{dy}{dx} + y = x^4\]
Find one-parameter families of solution curves of the following differential equation:-
\[x \log x\frac{dy}{dx} + y = 2 \log x\]
Find one-parameter families of solution curves of the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 \log x\]
Write the differential equation representing family of curves y = mx, where m is arbitrary constant.
The differential equation which represents the family of curves y = eCx is
Find the area of the region bounded by the curves (x -1)2 + y2 = 1 and x2 + y2 = 1, using integration.
Form the differential equation representing the family of curves y = e2x (a + bx), where 'a' and 'b' are arbitrary constants.
Form the differential equation representing the family of curves y = A sin x, by eliminating the arbitrary constant A.
Find the equation of a curve passing through the point (1, 1) if the perpendicular distance of the origin from the normal at any point P(x, y) of the curve is equal to the distance of P from the x-axis.
Form the differential equation of all circles which pass through origin and whose centres lie on y-axis.
Find the differential equation of system of concentric circles with centre (1, 2).
Find the equation of a curve passing through (2, 1) if the slope of the tangent to the curve at any point (x, y) is `(x^2 + y^2)/(2xy)`.
Find the equation of a curve passing through the point (1, 1). If the tangent drawn at any point P(x, y) on the curve meets the co-ordinate axes at A and B such that P is the mid-point of AB.
Family y = Ax + A3 of curves is represented by the differential equation of degree ______.
The differential equation of the family of curves x2 + y2 – 2ay = 0, where a is arbitrary constant, is ______.
Family y = Ax + A3 of curves will correspond to a differential equation of order ______.
Find the equation of the curve at every point of which the tangent line has a slope of 2x:
Form the differential equation of the family of hyperbola having foci on x-axis and centre at origin.