Advertisements
Advertisements
प्रश्न
Find the differential equation of the family of curves, x = A cos nt + B sin nt, where A and B are arbitrary constants.
उत्तर
The equation of the family of curves is \[x = A\cos nt + B\sin nt\] .........(1)
where `A" and "B` are arbitrary constants.
This equation contains two arbitrary constants, so we shall get a differential equation of second order.
Differentiating equation (1) with respect to t, we get
\[\frac{dx}{dt} = - \text{ An }\sin\text{ nt }+ \text{ Bn }\cos nt\] ............(2)
Differentiating equation (2) with respect to t, we get
\[\frac{d^2 x}{d t^2} = - A n^2 \cos nt - B n^2 \sin nt\]
\[ \Rightarrow \frac{d^2 x}{d t^2} = - n^2 \left( A\cos nt + B\sin nt \right)\]
\[ \Rightarrow \frac{d^2 x}{d t^2} = - n^2 x\]
\[ \Rightarrow \frac{d^2 x}{d t^2} + n^2 x = 0 \]
It is the required differential equation .
APPEARS IN
संबंधित प्रश्न
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
Form the differential equation of the family of ellipses having foci on y-axis and centre at origin.
Form the differential equation of the family of circles having centre on y-axis and radius 3 units.
Which of the following differential equation has y = x as one of its particular solution?
A. `(d^2y)/(dx^2) - x^2 (dy)/(dx) + xy = x`
B. `(d^2y)/(dx^2) + x dy/dx + xy = x`
C. `(d^2y)/(dx^2) - x^2 dy/dx + xy = 0`
D. `(d^2y)/(dx^2) + x dy/dx + xy = 0`
Form the differential equation from the following primitive where constants are arbitrary:
y2 = 4ax
Form the differential equation from the following primitive where constants are arbitrary:
y = cx + 2c2 + c3
Form the differential equation from the following primitive where constants are arbitrary:
xy = a2
Form the differential equation from the following primitive where constants are arbitrary:
y = ax2 + bx + c
Find the differential equation of the family of curves y = Ae2x + Be−2x, where A and B are arbitrary constants.
Form the differential equation corresponding to y2 = a (b − x2) by eliminating a and b.
Form the differential equation corresponding to y2 − 2ay + x2 = a2 by eliminating a.
Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x + a)2 + y2 = a2
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + (y − b)2 = 1
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} + 3y = e^{mx}\], m is a given real number.
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} + y \cos x = e^{\sin x} \cos x\]
Find one-parameter families of solution curves of the following differential equation:-
\[e^{- y} \sec^2 y dy = dx + x dy\]
Find one-parameter families of solution curves of the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 \log x\]
Write the order of the differential equation representing the family of curves y = ax + a3.
The differential equation which represents the family of curves y = eCx is
Form the differential equation of the family of ellipses having foci on y-axis and centre at the origin.
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
Find the area of the region bounded by the curves (x -1)2 + y2 = 1 and x2 + y2 = 1, using integration.
Find the equation of a curve whose tangent at any point on it, different from origin, has slope `y + y/x`.
Find the equation of a curve passing through the point (1, 1) if the perpendicular distance of the origin from the normal at any point P(x, y) of the curve is equal to the distance of P from the x-axis.
The differential equation representing the family of curves y = A sinx + B cosx is ______.
Form the differential equation by eliminating A and B in Ax2 + By2 = 1
Find the differential equation of system of concentric circles with centre (1, 2).
Family y = Ax + A3 of curves is represented by the differential equation of degree ______.
Family y = Ax + A3 of curves will correspond to a differential equation of order ______.
The differential equation of the family of curves y2 = 4a(x + a) is ______.
Find the equation of the curve at every point of which the tangent line has a slope of 2x:
The area above the x-axis and under the curve `y = sqrt(1/x - 1)` for `1/2 ≤ x ≤ 1` is: