हिंदी

Represent the Following Families of Curves by Forming the Corresponding Differential Equations (A, B Being Parameters): X 2 a 2 − Y 2 B 2 = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):

\[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\]

 

योग

उत्तर

The equation of family of curves is \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1.............(1)\]

where `a` and `b` are parameters.

As this equation has two arbitrary constants, we shall get a differential equation of second order.

Differentiating (1) with respect to x, we get

\[\frac{2x}{a^2} - \frac{2y}{b^2}\frac{dy}{dx} = 0, .........(2)\]

Differentiating (2) with respect to x, we get

\[\frac{2}{a^2} - \frac{2}{b^2} \left( \frac{dy}{dx} \right)^2 - \frac{2y}{b^2}\frac{d^2 y}{d x^2} = 0\]

\[ \Rightarrow \frac{2}{a^2} = \frac{2}{b^2}\left[ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right]\]

\[ \Rightarrow \frac{b^2}{a^2} = \left[ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right] .........\left( 3 \right)\]

Now, from (2), we get

\[\frac{2x}{a^2} = \frac{2y}{b^2}\frac{dy}{dx}\]

\[ \Rightarrow \frac{b^2}{a^2} = \frac{y}{x}\frac{dy}{dx} ..........\left( 4 \right)\]
From (3) and (4), we get 
\[\frac{y}{x}\frac{dy}{dx} = \left[ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right]\]
\[ \Rightarrow x\left[ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right] = y\frac{dy}{dx}\]
It is the required differential equation.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.02 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.02 | Q 16.06 | पृष्ठ १७

संबंधित प्रश्न

Form the differential equation of the family of ellipses having foci on y-axis and centre at origin.


Form the differential equation of the family of circles having centre on y-axis and radius 3 units.

 

Which of the following differential equation has y = x as one of its particular solution?

A. `(d^2y)/(dx^2) - x^2 (dy)/(dx) + xy = x`

B. `(d^2y)/(dx^2) + x dy/dx + xy = x`

C. `(d^2y)/(dx^2) - x^2 dy/dx + xy = 0`

D. `(d^2y)/(dx^2) + x dy/dx + xy = 0`

 

 

 


Form the differential equation of the family of circles in the first quadrant which touch the coordinate axes.


Show that the family of curves for which `dy/dx = (x^2+y^2)/(2x^2)` is given by  x2 - y2 = cx


Form the differential equation from the following primitive where constants are arbitrary:
y2 = 4ax


Form the differential equation from the following primitive where constants are arbitrary:
y = cx + 2c2 + c3


Form the differential equation from the following primitive where constants are arbitrary:
y = ax2 + bx + c


Find the differential equation of the family of curves y = Ae2x + Be−2x, where A and B are arbitrary constants.


Find the differential equation of the family of curves, x = A cos nt + B sin nt, where A and B are arbitrary constants.


Form the differential equation corresponding to y2 = a (b − x2) by eliminating a and b.


Form the differential equation corresponding to (x − a)2 + (y − b)2 = r2 by eliminating a and b.


Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x + a)2 + y2 = a2


Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x − a)2 − y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 − y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4ax


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + (y − b)2 = 1


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = ax3


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = eax


For the differential equation xy \[\frac{dy}{dx}\] = (x + 2) (y + 2). Find the solution curve passing through the point (1, −1).


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} - y = \cos 2x\]


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} + y = x^4\]


Find one-parameter families of solution curves of the following differential equation:-

\[x \log x\frac{dy}{dx} + y = 2 \log x\]


Form the differential equation of the family of ellipses having foci on y-axis and centre at the origin.


Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Find the equation of a curve whose tangent at any point on it, different from origin, has slope `y + y/x`.


The solution of the differential equation `2x * "dy"/"dx" y` = 3 represents a family of ______.


Find the equation of a curve passing through origin and satisfying the differential equation `(1 + x^2) "dy"/"dx" + 2xy` = 4x2 


Find the equation of a curve passing through the point (1, 1). If the tangent drawn at any point P(x, y) on the curve meets the co-ordinate axes at A and B such that P is the mid-point of AB.


The differential equation `y ("d"y)/("d"x) + "c"` represents: ______.


The curve for which the slope of the tangent at any point is equal to the ratio of the abcissa to the ordinate of the point is ______.


The differential equation representing the family of circles x2 + (y – a)2 = a2 will be of order two.


The area above the x-axis and under the curve `y = sqrt(1/x - 1)` for `1/2 ≤ x ≤ 1` is:


Form the differential equation of family of circles having centre on y-axis and raduis 3 units


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×