Advertisements
Advertisements
Question
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
Solution
The equation of family of curves is \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1.............(1)\]
where `a` and `b` are parameters.
As this equation has two arbitrary constants, we shall get a differential equation of second order.
Differentiating (1) with respect to x, we get
\[\frac{2x}{a^2} - \frac{2y}{b^2}\frac{dy}{dx} = 0, .........(2)\]
Differentiating (2) with respect to x, we get
\[\frac{2}{a^2} - \frac{2}{b^2} \left( \frac{dy}{dx} \right)^2 - \frac{2y}{b^2}\frac{d^2 y}{d x^2} = 0\]
\[ \Rightarrow \frac{2}{a^2} = \frac{2}{b^2}\left[ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right]\]
\[ \Rightarrow \frac{b^2}{a^2} = \left[ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right] .........\left( 3 \right)\]
Now, from (2), we get
\[\frac{2x}{a^2} = \frac{2y}{b^2}\frac{dy}{dx}\]
\[ \Rightarrow \frac{b^2}{a^2} = \frac{y}{x}\frac{dy}{dx} ..........\left( 4 \right)\]
From (3) and (4), we get
\[\frac{y}{x}\frac{dy}{dx} = \left[ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right]\]
\[ \Rightarrow x\left[ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right] = y\frac{dy}{dx}\]
It is the required differential equation.
APPEARS IN
RELATED QUESTIONS
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
Form the differential equation of the family of circles having centre on y-axis and radius 3 units.
Which of the following differential equations has y = c1 ex + c2 e–x as the general solution?
(A) `(d^2y)/(dx^2) + y = 0`
(B) `(d^2y)/(dx^2) - y = 0`
(C) `(d^2y)/(dx^2) + 1 = 0`
(D) `(d^2y)/(dx^2) - 1 = 0`
Form the differential equation from the following primitive where constants are arbitrary:
xy = a2
Find the differential equation of the family of curves, x = A cos nt + B sin nt, where A and B are arbitrary constants.
Form the differential equation corresponding to (x − a)2 + (y − b)2 = r2 by eliminating a and b.
Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x − a)2 − y2 = a2
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4ax
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
(x − a)2 − y2 = 1
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4a (x − b)
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = ax3
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = eax
For the differential equation xy \[\frac{dy}{dx}\] = (x + 2) (y + 2). Find the solution curve passing through the point (1, −1).
Find one-parameter families of solution curves of the following differential equation:-
\[x\frac{dy}{dx} + y = x^4\]
Find one-parameter families of solution curves of the following differential equation:-
\[\left( x + y \right)\frac{dy}{dx} = 1\]
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} \cos^2 x = \tan x - y\]
Find one-parameter families of solution curves of the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 \log x\]
Form the differential equation representing the family of curves y = mx, where m is an arbitrary constant.
Form the differential equation representing the family of curves `y2 = m(a2 - x2) by eliminating the arbitrary constants 'm' and 'a'.
Find the area of the region bounded by the curves (x -1)2 + y2 = 1 and x2 + y2 = 1, using integration.
Form the differential equation representing the family of curves y = e2x (a + bx), where 'a' and 'b' are arbitrary constants.
Find the differential equation of the family of curves y = Ae2x + B.e–2x.
Find the equation of a curve passing through the point (1, 1) if the perpendicular distance of the origin from the normal at any point P(x, y) of the curve is equal to the distance of P from the x-axis.
The solution of the differential equation `2x * "dy"/"dx" y` = 3 represents a family of ______.
Form the differential equation of all circles which pass through origin and whose centres lie on y-axis.
Find the equation of a curve passing through origin and satisfying the differential equation `(1 + x^2) "dy"/"dx" + 2xy` = 4x2
Form the differential equation by eliminating A and B in Ax2 + By2 = 1
Find the equation of the curve through the point (1, 0) if the slope of the tangent to the curve at any point (x, y) is `(y - 1)/(x^2 + x)`
The differential equation of the family of curves x2 + y2 – 2ay = 0, where a is arbitrary constant, is ______.
Family y = Ax + A3 of curves will correspond to a differential equation of order ______.
The differential equation representing the family of circles x2 + (y – a)2 = a2 will be of order two.
Find the equation of the curve at every point of which the tangent line has a slope of 2x:
The area above the x-axis and under the curve `y = sqrt(1/x - 1)` for `1/2 ≤ x ≤ 1` is:
From the differential equation of the family of circles touching the y-axis at origin
Form the differential equation of the family of hyperbola having foci on x-axis and centre at origin.