Advertisements
Advertisements
Questions
Find one-parameter families of solution curves of the following differential equation:-
\[\left( x + y \right)\frac{dy}{dx} = 1\]
Solve the following differential equation:-
\[\left( x + y \right)\frac{dy}{dx} = 1\]
Solution
We have,
\[\left( x + y \right)\frac{dy}{dx} = 1\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{x + y}\]
\[ \Rightarrow \frac{dx}{dy} = x + y\]
\[ \Rightarrow \frac{dx}{dy} - x = y . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dx}{dy} + Px = Q\]
where
\[P = - 1\]
\[Q = y\]
\[ \therefore I . F . = e^{\int P\ dy} \]
\[ = e^{\int - 1 dy} \]
\[ = e^{- y} \]
\[\text{ Multiplying both sides of }(1)\text{ by }e^{- y} ,\text{ we get }\]
\[ e^{- y} \left( \frac{dx}{dy} - x \right) = e^{- y} y\]
\[ \Rightarrow e^{- y} \frac{dx}{dy} - e^{- y} x = e^{- y} y\]
Integrating both sides with respect to y, we get
\[ \Rightarrow e^{- y} x = y\int e^{- y} dy - \int\left[ \frac{d}{dy}\left( y \right)\int e^{- y} dy \right]dy + C\]
\[ \Rightarrow e^{- y} x = - y e^{- y} - e^{- y} + C\]
\[ \Rightarrow e^{- y} x + y e^{- y} + e^{- y} = C\]
\[ \Rightarrow \left( x + y + 1 \right) e^{- y} = C\]
\[ \Rightarrow \left( x + y + 1 \right) = C e^y \]
\[\text{ Hence, }\left( x + y + 1 \right) = C e^y\text{ is the required solution.}\]
APPEARS IN
RELATED QUESTIONS
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at origin.
Which of the following differential equations has y = c1 ex + c2 e–x as the general solution?
(A) `(d^2y)/(dx^2) + y = 0`
(B) `(d^2y)/(dx^2) - y = 0`
(C) `(d^2y)/(dx^2) + 1 = 0`
(D) `(d^2y)/(dx^2) - 1 = 0`
Form the differential equation of the family of curves represented by y2 = (x − c)3.
Form the differential equation from the following primitive where constants are arbitrary:
y = cx + 2c2 + c3
Form the differential equation from the following primitive where constants are arbitrary:
y = ax2 + bx + c
Find the differential equation of the family of curves y = Ae2x + Be−2x, where A and B are arbitrary constants.
Find the differential equation of the family of curves, x = A cos nt + B sin nt, where A and B are arbitrary constants.
Form the differential equation corresponding to y2 = a (b − x2) by eliminating a and b.
Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x + a)2 + y2 = a2
Form the differential equation of the family of curves represented by the equation (a being the parameter):
(x − a)2 + 2y2 = a2
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = a2
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + (y − b)2 = 1
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
(x − a)2 − y2 = 1
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4a (x − b)
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = eax
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x\]
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} - y = \cos 2x\]
Find one-parameter families of solution curves of the following differential equation:-
\[x\frac{dy}{dx} + y = x^4\]
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} - \frac{2xy}{1 + x^2} = x^2 + 2\]
Write the differential equation representing family of curves y = mx, where m is arbitrary constant.
Write the order of the differential equation representing the family of curves y = ax + a3.
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
Find the area of the region bounded by the curves (x -1)2 + y2 = 1 and x2 + y2 = 1, using integration.
Form the differential equation representing the family of curves y = e2x (a + bx), where 'a' and 'b' are arbitrary constants.
Find the differential equation of the family of curves y = Ae2x + B.e–2x.
Find the differential equation of the family of lines through the origin.
Find the equation of a curve whose tangent at any point on it, different from origin, has slope `y + y/x`.
Find the equation of a curve passing through the point (1, 1) if the perpendicular distance of the origin from the normal at any point P(x, y) of the curve is equal to the distance of P from the x-axis.
Form the differential equation by eliminating A and B in Ax2 + By2 = 1
Find the differential equation of system of concentric circles with centre (1, 2).
Find the equation of a curve passing through the point (1, 1). If the tangent drawn at any point P(x, y) on the curve meets the co-ordinate axes at A and B such that P is the mid-point of AB.
Family y = Ax + A3 of curves is represented by the differential equation of degree ______.
The differential equation of the family of curves x2 + y2 – 2ay = 0, where a is arbitrary constant, is ______.
Family y = Ax + A3 of curves will correspond to a differential equation of order ______.