English

Find the differential equation of the family of lines through the origin. - Mathematics

Advertisements
Advertisements

Question

Find the differential equation of the family of lines through the origin.

Sum

Solution

Let y = mx be the family of lines through origin.

Therefore, `"dy"/"dx"` = m

Eliminating m,

We get y = `"dy"/"dx" * x` or `x "dy"/"dx" - y` = 0.

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Differential Equations - Solved Examples [Page 182]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 9 Differential Equations
Solved Examples | Q 5 | Page 182

RELATED QUESTIONS

Form the differential equation of the family of ellipses having foci on y-axis and centre at origin.


Form the differential equation corresponding to y2 = a (b − x2) by eliminating a and b.


Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x + a)2 + y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):

\[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\]

 


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = ax3


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = ax3


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = eax


Show that y = bex + ce2x is a solution of the differential equation, \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} + 3y = e^{mx}\], m is a given real number.


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} - y = \cos 2x\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} - \frac{2xy}{1 + x^2} = x^2 + 2\]


Write the order of the differential equation representing the family of curves y = ax + a3.


Form the differential equation representing the family of curves y = mx, where m is an arbitrary constant.


Form the differential equation representing the family of curves y = A sin x, by eliminating the arbitrary constant A.


Find the equation of a curve whose tangent at any point on it, different from origin, has slope `y + y/x`.


The differential equation representing the family of curves y = A sinx + B cosx is ______.


Find the equation of a curve passing through origin and satisfying the differential equation `(1 + x^2) "dy"/"dx" + 2xy` = 4x2 


Find the equation of a curve passing through (2, 1) if the slope of the tangent to the curve at any point (x, y) is `(x^2 + y^2)/(2xy)`.


Find the equation of the curve through the point (1, 0) if the slope of the tangent to the curve at any point (x, y) is `(y - 1)/(x^2 + x)`


Find the equation of a curve passing through the point (1, 1). If the tangent drawn at any point P(x, y) on the curve meets the co-ordinate axes at A and B such that P is the mid-point of AB.


The curve for which the slope of the tangent at any point is equal to the ratio of the abcissa to the ordinate of the point is ______.


The differential equation of the family of curves y2 = 4a(x + a) is ______.


The differential equation representing the family of circles x2 + (y – a)2 = a2 will be of order two.


The area above the x-axis and under the curve `y = sqrt(1/x - 1)` for `1/2 ≤ x ≤ 1` is:


From the differential equation of the family of circles touching the y-axis at origin


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×