English

Form the differential equation representing the family of curves y = A sin x, by eliminating the arbitrary constant A. - Mathematics

Advertisements
Advertisements

Question

Form the differential equation representing the family of curves y = A sin x, by eliminating the arbitrary constant A.

Sum

Solution

Given y = A sin x ..........(1)

Differentiating with respect to x

`"dy"/"dx" = "A"cos"x"`  ......(2)

From (1) and (2) we have

`"dy"/"dx" = "y"/sin"x" . cos"x"`

⇒ `"dy"/"dx" - (cot"x")"y" = 0`

Thus, this is the required differential equation.
shaalaa.com
  Is there an error in this question or solution?
2018-2019 (March) 65/4/3

RELATED QUESTIONS

Form the differential equation of the family of ellipses having foci on y-axis and centre at origin.


Form the differential equation of the family of curves represented by y2 = (x − c)3.


Form the differential equation from the following primitive where constants are arbitrary:
y = cx + 2c2 + c3


Form the differential equation from the following primitive where constants are arbitrary:
xy = a2


Form the differential equation corresponding to y2 − 2ay + x2 = a2 by eliminating a.


Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x − a)2 − y2 = a2


Form the differential equation of the family of curves represented by the equation (a being the parameter):
 (x − a)2 + 2y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + (y − b)2 = 1


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = ax3


Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x\]


For the differential equation xy \[\frac{dy}{dx}\] = (x + 2) (y + 2). Find the solution curve passing through the point (1, −1).


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} + 3y = e^{mx}\], m is a given real number.


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} - \frac{2xy}{1 + x^2} = x^2 + 2\]


Find one-parameter families of solution curves of the following differential equation:-

\[\left( x + y \right)\frac{dy}{dx} = 1\]


Write the differential equation representing family of curves y = mx, where m is arbitrary constant.


Write the order of the differential equation representing the family of curves y = ax + a3.


Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Find the differential equation of the family of lines through the origin.


Find the equation of a curve passing through the point (1, 1) if the perpendicular distance of the origin from the normal at any point P(x, y) of the curve is equal to the distance of P from the x-axis.


The differential equation representing the family of curves y = A sinx + B cosx is ______.


Form the differential equation of all circles which pass through origin and whose centres lie on y-axis.


Find the equation of a curve passing through origin and satisfying the differential equation `(1 + x^2) "dy"/"dx" + 2xy` = 4x2 


Find the differential equation of system of concentric circles with centre (1, 2).


The differential equation `y ("d"y)/("d"x) + "c"` represents: ______.


The curve for which the slope of the tangent at any point is equal to the ratio of the abcissa to the ordinate of the point is ______.


The differential equation of the family of curves y2 = 4a(x + a) is ______.


Find the equation of the curve at every point of which the tangent line has a slope of 2x:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×