Advertisements
Advertisements
Question
Form the differential equation corresponding to y2 − 2ay + x2 = a2 by eliminating a.
Solution
The equation of the family of curves is \[y^2 - 2ay + x^2 = a^2\] ...(1)
where a is a parameter.
This equation contains only one arbitrary constant, so we shall get a differential equation of first order.
Differentiating equation (1) with respect to x, we get
\[2y\frac{dy}{dx} - 2a\frac{dy}{dx} + 2x = 0\]
\[ \Rightarrow 2y\frac{dy}{dx} + 2x = 2a\frac{dy}{dx}\]
\[ \Rightarrow y + \frac{x}{\frac{dy}{dx}} = a\]
Substituting the value of a in equation (2), we get
\[y^2 - 2\left( y + \frac{x}{\frac{dy}{dx}} \right)y + x^2 = \left( y + \frac{x}{\frac{dy}{dx}} \right)^2 \]
\[ \Rightarrow \frac{y^2 \frac{dy}{dx} - 2\left( y\frac{dy}{dx} + x \right)y + x^2 \frac{dy}{dx}}{\frac{dy}{dx}} = \frac{\left( y\frac{dy}{dx} + x \right)^2}{\left( \frac{dy}{dx} \right)^2}\]
\[ \Rightarrow y^2 \left( \frac{dy}{dx} \right)^2 - 2 y^2 \left( \frac{dy}{dx} \right)^2 - 2xy\left( \frac{dy}{dx} \right) + x^2 \left( \frac{dy}{dx} \right)^2 = y^2 \left( \frac{dy}{dx} \right)^2 + 2xy\left( \frac{dy}{dx} \right) + x^2 \]
\[ \Rightarrow \left( x^2 - 2 y^2 \right) \left( \frac{dy}{dx} \right)^2 - 4xy\left( \frac{dy}{dx} \right) - x^2 = 0 \]
It is the required differential equation.
APPEARS IN
RELATED QUESTIONS
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
Form the differential equation of the family of circles having centre on y-axis and radius 3 units.
Which of the following differential equations has y = c1 ex + c2 e–x as the general solution?
(A) `(d^2y)/(dx^2) + y = 0`
(B) `(d^2y)/(dx^2) - y = 0`
(C) `(d^2y)/(dx^2) + 1 = 0`
(D) `(d^2y)/(dx^2) - 1 = 0`
Which of the following differential equation has y = x as one of its particular solution?
A. `(d^2y)/(dx^2) - x^2 (dy)/(dx) + xy = x`
B. `(d^2y)/(dx^2) + x dy/dx + xy = x`
C. `(d^2y)/(dx^2) - x^2 dy/dx + xy = 0`
D. `(d^2y)/(dx^2) + x dy/dx + xy = 0`
Form the differential equation of the family of circles in the first quadrant which touch the coordinate axes.
Show that the family of curves for which `dy/dx = (x^2+y^2)/(2x^2)` is given by x2 - y2 = cx
Form the differential equation of the family of curves represented by y2 = (x − c)3.
Form the differential equation from the following primitive where constants are arbitrary:
y2 = 4ax
Form the differential equation from the following primitive where constants are arbitrary:
y = cx + 2c2 + c3
Form the differential equation from the following primitive where constants are arbitrary:
y = ax2 + bx + c
Find the differential equation of the family of curves y = Ae2x + Be−2x, where A and B are arbitrary constants.
Form the differential equation corresponding to y2 = a (b − x2) by eliminating a and b.
Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x + a)2 + y2 = a2
Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x − a)2 − y2 = a2
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4ax
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + (y − b)2 = 1
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
(x − a)2 − y2 = 1
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = ax3
Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x\]
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} + y \cos x = e^{\sin x} \cos x\]
Find one-parameter families of solution curves of the following differential equation:-
\[e^{- y} \sec^2 y dy = dx + x dy\]
Find one-parameter families of solution curves of the following differential equation:-
\[x \log x\frac{dy}{dx} + y = 2 \log x\]
Write the differential equation representing family of curves y = mx, where m is arbitrary constant.
The family of curves in which the sub tangent at any point of a curve is double the abscissae, is given by
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
Find the area of the region bounded by the curves (x -1)2 + y2 = 1 and x2 + y2 = 1, using integration.
Find the equation of a curve whose tangent at any point on it, different from origin, has slope `y + y/x`.
The differential equation representing the family of curves y = A sinx + B cosx is ______.
Find the differential equation of system of concentric circles with centre (1, 2).
Find the equation of a curve passing through origin if the slope of the tangent to the curve at any point (x, y) is equal to the square of the difference of the abcissa and ordinate of the point.
The differential equation `y ("d"y)/("d"x) + "c"` represents: ______.
Family y = Ax + A3 of curves will correspond to a differential equation of order ______.
The differential equation representing the family of circles x2 + (y – a)2 = a2 will be of order two.