English

Find One-parameter Families of Solution Curves of the Following Differential Equation:- E − Y Sec 2 Y D Y = D X + X D Y - Mathematics

Advertisements
Advertisements

Questions

Find one-parameter families of solution curves of the following differential equation:-

\[e^{- y} \sec^2 y dy = dx + x dy\]

Solve the following differential equation:-

\[e^{- y} \sec^2 y dy = dx + x dy\]

Sum

Solution

We have,
\[ e^{- y} \sec^2 y dy = dx + x dy\]
\[ \Rightarrow dx = e^{- y} \sec^2 y dy - x dy\]
\[ \Rightarrow \frac{dx}{dy} = e^{- y} \sec^2 y - x\]
\[ \Rightarrow \frac{dx}{dy} + x = e^{- y} \sec^2 y . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dx}{dy} + Px = Q\]
where
\[P = 1\]
\[Q = e^{- y} \sec^2 y\]
\[ \therefore I . F . = e^{\int P\ dy} \]
\[ = e^{\int dy} \]
\[ = e^y \]
\[\text{ Multiplying both sides of }\left( 1 \right)\text{ by }e^y , \text{ we get }\]
\[ e^y \left( \frac{dx}{dy} + x \right) = e^y e^{- y} \sec^2 y\]
\[ \Rightarrow e^y \frac{dx}{dy} + e^y x = \sec^2 y\]
Integrating both sides with respect to y, we get
\[ e^y x = \int \sec^2 y\ dy + C\]
\[ \Rightarrow e^y x = \tan y + C\]
\[ \Rightarrow x = \left( \tan y + C \right) e^{- y} \]
\[\text{ Hence, }x = \left( \tan y + C \right) e^{- y}\text{ is the required solution.}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.10 [Page 107]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.10 | Q 36.1 | Page 107

RELATED QUESTIONS

Form the differential equation corresponding to y = emx by eliminating m.


Form the differential equation from the following primitive where constants are arbitrary:
y = ax2 + bx + c


Find the differential equation of the family of curves, x = A cos nt + B sin nt, where A and B are arbitrary constants.


Form the differential equation corresponding to y2 − 2ay + x2 = a2 by eliminating a.


Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x + a)2 + y2 = a2


Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x − a)2 − y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):

\[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\]

 


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = ax3


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = ax3


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = eax


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Show that y = bex + ce2x is a solution of the differential equation, \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} - y = \cos 2x\]


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x}\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} + y \cos x = e^{\sin x} \cos x\]


Write the differential equation representing family of curves y = mx, where m is arbitrary constant.


Write the order of the differential equation representing the family of curves y = ax + a3.


The family of curves in which the sub tangent at any point of a curve is double the abscissae, is given by


Form the differential equation representing the family of curves y = mx, where m is an arbitrary constant.


Form the differential equation representing the family of curves `y2 = m(a2 - x2) by eliminating the arbitrary constants 'm' and 'a'. 


Form the differential equation representing the family of curves y = e2x (a + bx), where 'a' and 'b' are arbitrary constants.


Form the differential equation representing the family of curves y = A sin x, by eliminating the arbitrary constant A.


Find the differential equation of the family of lines through the origin.


Find the equation of a curve whose tangent at any point on it, different from origin, has slope `y + y/x`.


Find the equation of a curve passing through the point (1, 1) if the perpendicular distance of the origin from the normal at any point P(x, y) of the curve is equal to the distance of P from the x-axis.


Form the differential equation of all circles which pass through origin and whose centres lie on y-axis.


Form the differential equation by eliminating A and B in Ax2 + By2 = 1


Find the differential equation of system of concentric circles with centre (1, 2).


Find the equation of the curve through the point (1, 0) if the slope of the tangent to the curve at any point (x, y) is `(y - 1)/(x^2 + x)`


Find the equation of a curve passing through origin if the slope of the tangent to the curve at any point (x, y) is equal to the square of the difference of the abcissa and ordinate of the point.


Family y = Ax + A3 of curves is represented by the differential equation of degree ______.


The differential equation of the family of curves x2 + y2 – 2ay = 0, where a is arbitrary constant, is ______.


The curve for which the slope of the tangent at any point is equal to the ratio of the abcissa to the ordinate of the point is ______.


Differential equation representing the family of curves y = ex (Acosx + Bsinx) is `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + 2y` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×