English

Find One-parameter Families of Solution Curves of the Following Differential Equation:- D Y D X − Y = Cos 2 X - Mathematics

Advertisements
Advertisements

Questions

Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} - y = \cos 2x\]

Solve the following differential equation:-

\[\frac{dy}{dx} - y = \cos 2x\]

Sum

Solution

We have, 
\[\frac{dy}{dx} - y = \cos 2x . . . . . (1)\]
Clearly, it is a linear differential equation of the form
\[\frac{dy}{dx} + Py = Q\]
where
\[P = - 1\]
\[Q = \cos 2x\]
\[ \therefore I . F . = e^{\int P\ dx} \]
\[ = e^{- \int dx} \]
\[ = e^{- x} \]
\[\text{ Multiplying both sides of }(1)\text{ by }e^{- x} ,\text{ we get }\]
\[ e^{- x} \left( \frac{dy}{dx} - y \right) = e^{- x} \cos 2x \]
\[ \Rightarrow e^{- x} \frac{dy}{dx} - e^{- x} y = e^{- x} \cos 2x\]
Integrating both sides with respect to x, we get
\[y e^{- x} = \int e^{- x} \cos 2x dx + C \]
\[ \Rightarrow y e^{- x} = I + C . . . . . (2)\]
Where, 
\[I = \int e^{- x} \cos 2x dx . . . . . (3)\]
\[ \Rightarrow I = \frac{1}{2} e^{- x} \sin 2x - \frac{1}{2}\int\left( - e^{- x} \sin 2x \right) dx\]
\[ \Rightarrow I = \frac{1}{2} e^{- x} \sin 2x + \frac{1}{2}\int e^{- x} \sin 2x dx\]
\[ \Rightarrow I = \frac{1}{2} e^{- x} \sin 2x - \frac{1}{4} e^{- x} \cos 2x - \frac{1}{2} \times \frac{1}{2}\int\left[ \left( - e^{- x} \right) \times \left( - \cos 2x \right) \right] dx\]
\[ \Rightarrow I = \frac{1}{2} e^{- x} \sin 2x - \frac{1}{4} e^{- x} \cos 2x - \frac{1}{4}\int e^{- x} \cos 2x dx\]
\[ \Rightarrow I = \frac{1}{2} e^{- x} \sin 2x - \frac{1}{4} e^{- x} \cos 2x - \frac{1}{4}I .........\left[\text{ From (3)}\right]\]
\[ \Rightarrow \frac{5}{4}I = \frac{1}{2} e^{- x} \sin 2x - \frac{1}{4} e^{- x} \cos 2x\]
\[ \Rightarrow 5I = 2 e^{- x} \sin 2x - e^{- x} \cos 2x\]
\[ \Rightarrow I = \frac{e^{- x}}{5}\left( 2\sin 2x - \cos 2x \right) . . . . . (4)\]
From (2) and (4) we get
\[ \Rightarrow y e^{- x} = \frac{e^{- x}}{5}\left( 2\sin 2x - \cos 2x \right) + C\]
\[ \Rightarrow y = \frac{1}{5}\left( 2\sin 2x - \cos 2x \right) + C e^x \]
\[\text{ Hence, }y = \frac{1}{5}\left( 2\sin 2x - \cos 2x \right) + C e^x\text{ is the required solution.}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.10 [Page 107]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.10 | Q 36.02 | Page 107

RELATED QUESTIONS

Form the differential equation of the family of circles touching the y-axis at the origin.


Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.


Form the differential equation of the family of circles having centre on y-axis and radius 3 units.

 

Which of the following differential equation has y = x as one of its particular solution?

A. `(d^2y)/(dx^2) - x^2 (dy)/(dx) + xy = x`

B. `(d^2y)/(dx^2) + x dy/dx + xy = x`

C. `(d^2y)/(dx^2) - x^2 dy/dx + xy = 0`

D. `(d^2y)/(dx^2) + x dy/dx + xy = 0`

 

 

 


Form the differential equation of the family of circles in the first quadrant which touch the coordinate axes.


For the curve y = 5x – 2x3, if x increases at the rate of 2 units/sec, then find the rate of change of the slope of the curve when x = 3


Show that the family of curves for which `dy/dx = (x^2+y^2)/(2x^2)` is given by  x2 - y2 = cx


Form the differential equation of the family of curves represented by y2 = (x − c)3.


Form the differential equation corresponding to y = emx by eliminating m.


Form the differential equation from the following primitive where constants are arbitrary:
y2 = 4ax


Find the differential equation of the family of curves y = Ae2x + Be−2x, where A and B are arbitrary constants.


Find the differential equation of the family of curves, x = A cos nt + B sin nt, where A and B are arbitrary constants.


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4ax


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} + 3y = e^{mx}\], m is a given real number.


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} + y = x^4\]


Find one-parameter families of solution curves of the following differential equation:-

\[x \log x\frac{dy}{dx} + y = 2 \log x\]


Write the order of the differential equation representing the family of curves y = ax + a3.


Form the differential equation of the family of ellipses having foci on y-axis and centre at the origin.


Form the differential equation representing the family of curves y = e2x (a + bx), where 'a' and 'b' are arbitrary constants.


Form the differential equation representing the family of curves y = A sin x, by eliminating the arbitrary constant A.


Find the differential equation of the family of lines through the origin.


Find the equation of a curve whose tangent at any point on it, different from origin, has slope `y + y/x`.


The solution of the differential equation `2x * "dy"/"dx" y` = 3 represents a family of ______.


Form the differential equation by eliminating A and B in Ax2 + By2 = 1


Family y = Ax + A3 of curves is represented by the differential equation of degree ______.


Family y = Ax + A3 of curves will correspond to a differential equation of order ______.


The differential equation of the family of curves y2 = 4a(x + a) is ______.


Find the equation of the curve at every point of which the tangent line has a slope of 2x:


The area above the x-axis and under the curve `y = sqrt(1/x - 1)` for `1/2 ≤ x ≤ 1` is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×