Advertisements
Advertisements
Question
Form the differential equation by eliminating A and B in Ax2 + By2 = 1
Solution
Given that Ax2 + By2 = 1
Differentiating w.r.t. x, we get
`2"A" . x + 2"B"y "dy"/"dx"` = 0
⇒ `"A"x + "B"y . "dy"/"dx"` = 0
⇒ `"B"y . "dy"/"dx"` = –Ax
∴ `y/x * "dy"/"dx" = - "A"/"B"`
Differentiating both sides again w.r.t. x, we have
`y/x * ("d"^2y)/("d"x^2) + "dy"/"dx"((x * "dy"/"dx" - y.1)/x^2)` = 0
⇒ `(yx^2)/x * ("d"^2y)/("d"x^2) + x * ("dy"/"dx")^2 - y * "dy"/"dx"` = 0
⇒ `xy * ("d"^2y)/("d"x^2) + x * ("dy"/"dx")^2 - y * "dy"/"dx"` = 0
⇒ `xy * y"''" + x*(y"'")^2 - y*y"'"` = 0
Hence, the required equation is `xy * y"''" + x*(y"'")^2 - y*y"'"` = 0
APPEARS IN
RELATED QUESTIONS
Form the differential equation of the family of ellipses having foci on y-axis and centre at origin.
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at origin.
Which of the following differential equations has y = c1 ex + c2 e–x as the general solution?
(A) `(d^2y)/(dx^2) + y = 0`
(B) `(d^2y)/(dx^2) - y = 0`
(C) `(d^2y)/(dx^2) + 1 = 0`
(D) `(d^2y)/(dx^2) - 1 = 0`
For the curve y = 5x – 2x3, if x increases at the rate of 2 units/sec, then find the rate of change of the slope of the curve when x = 3
Form the differential equation from the following primitive where constants are arbitrary:
xy = a2
Form the differential equation corresponding to y2 = a (b − x2) by eliminating a and b.
Form the differential equation corresponding to y2 − 2ay + x2 = a2 by eliminating a.
Form the differential equation corresponding to (x − a)2 + (y − b)2 = r2 by eliminating a and b.
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4ax
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = ax3
Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x\]
Find one-parameter families of solution curves of the following differential equation:-
\[x\frac{dy}{dx} + y = x^4\]
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} - \frac{2xy}{1 + x^2} = x^2 + 2\]
Write the differential equation representing family of curves y = mx, where m is arbitrary constant.
Write the order of the differential equation representing the family of curves y = ax + a3.
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
Find the differential equation of the family of lines through the origin.
The solution of the differential equation `2x * "dy"/"dx" y` = 3 represents a family of ______.
The differential equation representing the family of curves y = A sinx + B cosx is ______.
Form the differential equation of all circles which pass through origin and whose centres lie on y-axis.
Find the equation of a curve passing through origin and satisfying the differential equation `(1 + x^2) "dy"/"dx" + 2xy` = 4x2
Find the equation of a curve passing through (2, 1) if the slope of the tangent to the curve at any point (x, y) is `(x^2 + y^2)/(2xy)`.
Find the equation of a curve passing through the point (1, 1). If the tangent drawn at any point P(x, y) on the curve meets the co-ordinate axes at A and B such that P is the mid-point of AB.
The differential equation `y ("d"y)/("d"x) + "c"` represents: ______.
The differential equation of the family of curves x2 + y2 – 2ay = 0, where a is arbitrary constant, is ______.
Family y = Ax + A3 of curves will correspond to a differential equation of order ______.
Differential equation representing the family of curves y = ex (Acosx + Bsinx) is `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + 2y` = 0