English

The differential equation of the family of curves x2 + y2 – 2ay = 0, where a is arbitrary constant, is ______. - Mathematics

Advertisements
Advertisements

Question

The differential equation of the family of curves x2 + y2 – 2ay = 0, where a is arbitrary constant, is ______.

Options

  • `(x^2 - y^2) ("d"y)/("d"x)` = 2xy

  • `2(x^2 + y^2) ("d"y)/("d"x)` = xy

  • `2(x^2 - y^2) ("d"y)/("d"x)` = xy

  • `(x^2 + y^2) ("d"y)/("d"x)` = 2xy

MCQ
Fill in the Blanks

Solution

The differential equation of the family of curves x2 + y2 – 2ay = 0, where a is arbitrary constant, is `(x^2 - y^2) ("d"y)/("d"x)` = 2xy.

Explanation:

The given equation is x2 + y2 – 2ay = 0   ......(1)

Differentiating w.r.t. x, we have

`2x + 2y * ("d"y)/("d"x) - 2"a" ("d"y)/("d"x)` = 0

⇒ `x + y ("d"y)/("d"x) - "a" ("d"y)/("d"x)` = 0

⇒ `x + (y - "a") ("d"y)/("d"x)` = 0

⇒ `(y - "a") ("d"y)/("d"x)` = – x

⇒ y – a = `(-x)/(("d"y)/("d"x))`

⇒ a = `y + x/(("d"y)/("d"x))`

⇒ a = `(y * ("d"y)/("d"x) + x)/(("d"y)/("d"x))`

Putting the value of a in equation (1) we get

`x^2 + y^2 - 2y [(y ("d"y)/("d"x) + x)/(("d"y)/("d"x))]` = 0

⇒ `(x^2 + y^2) ("d"y)/("d"x) - 2y(y ("d"y)/("d"x) + x)` = 0

⇒ `(x^2 + y^2) ("d"y)/("d"x) - 2y^2 ("d"y)/("d"x) - 2xy` = 0

⇒ `(x^2 + y^2 - 2y^2) ("d"y)/("d"x^2)` = 2xy

⇒ `(x^2 - y^2) ("d"y)/("d"x)` = 2xy

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Differential Equations - Exercise [Page 199]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 9 Differential Equations
Exercise | Q 59 | Page 199

RELATED QUESTIONS

Form the differential equation of the family of ellipses having foci on y-axis and centre at origin.


Form the differential equation of the family of hyperbolas having foci on x-axis and centre at origin.


Form the differential equation of the family of circles having centre on y-axis and radius 3 units.

 

Form the differential equation representing the family of curves given by (x – a)2 + 2y2 = a2, where a is an arbitrary constant.


Form the differential equation of the family of circles in the first quadrant which touch the coordinate axes.


Form the differential equation of the family of curves represented by y2 = (x − c)3.


Form the differential equation from the following primitive where constants are arbitrary:
y2 = 4ax


Form the differential equation from the following primitive where constants are arbitrary:
y = cx + 2c2 + c3


Form the differential equation corresponding to y2 = a (b − x2) by eliminating a and b.


Form the differential equation of the family of curves represented by the equation (a being the parameter):
 (x − a)2 + 2y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 − y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + (y − b)2 = 1


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
(x − a)2 − y2 = 1


Find one-parameter families of solution curves of the following differential equation:-

\[\left( x \log x \right)\frac{dy}{dx} + y = \log x\]


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 \log x\]


The family of curves in which the sub tangent at any point of a curve is double the abscissae, is given by


Form the differential equation of the family of ellipses having foci on y-axis and centre at the origin.


Find the differential equation of system of concentric circles with centre (1, 2).


Find the equation of the curve through the point (1, 0) if the slope of the tangent to the curve at any point (x, y) is `(y - 1)/(x^2 + x)`


Find the equation of a curve passing through origin if the slope of the tangent to the curve at any point (x, y) is equal to the square of the difference of the abcissa and ordinate of the point.


Family y = Ax + A3 of curves will correspond to a differential equation of order ______.


The curve for which the slope of the tangent at any point is equal to the ratio of the abcissa to the ordinate of the point is ______.


The differential equation representing the family of circles x2 + (y – a)2 = a2 will be of order two.


The area above the x-axis and under the curve `y = sqrt(1/x - 1)` for `1/2 ≤ x ≤ 1` is:


Form the differential equation of family of circles having centre on y-axis and raduis 3 units


Form the differential equation of the family of hyperbola having foci on x-axis and centre at origin.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×