English

Form the Differential Equation from the Following Primitive Where Constants Are Arbitrary: Y2 = 4ax - Mathematics

Advertisements
Advertisements

Question

Form the differential equation from the following primitive where constants are arbitrary:
y2 = 4ax

Sum

Solution

The equation of family of curves is \[y^2 = 4ax.................(1)\]

where a is an arbitrary constant.

This equation contains only one arbitrary constant, so we shall get a differential equation of first order.

Differentiating equation (1) with respect to x, we get

\[2y\frac{dy}{dx} = 4a\]

\[ \Rightarrow \frac{y}{2}\frac{dy}{dx} = a .................\left( 2 \right)\]

Putting the value of  a  in equation (1), we get

\[y^2 = 4\frac{y}{2}\frac{dy}{dx}x\]

\[ \Rightarrow y = 2x\frac{dy}{dx}, \]

It is the required differential equation.

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.02 [Page 16]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.02 | Q 3.1 | Page 16

RELATED QUESTIONS

Form the differential equation of the family of circles touching the y-axis at the origin.


Which of the following differential equations has y = c1 ex + c2 e–x as the general solution?

(A) `(d^2y)/(dx^2) + y = 0`

(B) `(d^2y)/(dx^2) - y = 0`

(C) `(d^2y)/(dx^2) + 1 = 0`

(D) `(d^2y)/(dx^2)  - 1 = 0`

 

 


Form the differential equation of the family of circles in the first quadrant which touch the coordinate axes.


For the curve y = 5x – 2x3, if x increases at the rate of 2 units/sec, then find the rate of change of the slope of the curve when x = 3


Show that the family of curves for which `dy/dx = (x^2+y^2)/(2x^2)` is given by  x2 - y2 = cx


Form the differential equation corresponding to y = emx by eliminating m.


Form the differential equation from the following primitive where constants are arbitrary:
y = cx + 2c2 + c3


Form the differential equation from the following primitive where constants are arbitrary:
xy = a2


Form the differential equation corresponding to (x − a)2 + (y − b)2 = r2 by eliminating a and b.


Form the differential equation of the family of curves represented by the equation (a being the parameter):
 (x − a)2 + 2y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = ax3


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} + 3y = e^{mx}\], m is a given real number.


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x}\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} + y \cos x = e^{\sin x} \cos x\]


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 \log x\]


Form the differential equation representing the family of curves y = mx, where m is an arbitrary constant.


Form the differential equation of the family of ellipses having foci on y-axis and centre at the origin.


Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Find the area of the region bounded by the curves (x -1)2 + y2 = 1 and x2 + y2 = 1, using integration.


Form the differential equation representing the family of curves y = e2x (a + bx), where 'a' and 'b' are arbitrary constants.


Form the differential equation representing the family of curves y = A sin x, by eliminating the arbitrary constant A.


Find the differential equation of the family of curves y = Ae2x + B.e–2x.


The solution of the differential equation `2x * "dy"/"dx" y` = 3 represents a family of ______.


Find the equation of a curve passing through origin and satisfying the differential equation `(1 + x^2) "dy"/"dx" + 2xy` = 4x2 


Form the differential equation by eliminating A and B in Ax2 + By2 = 1


Find the equation of a curve passing through (2, 1) if the slope of the tangent to the curve at any point (x, y) is `(x^2 + y^2)/(2xy)`.


The differential equation `y ("d"y)/("d"x) + "c"` represents: ______.


The differential equation of the family of curves x2 + y2 – 2ay = 0, where a is arbitrary constant, is ______.


The differential equation representing the family of circles x2 + (y – a)2 = a2 will be of order two.


Find the equation of the curve at every point of which the tangent line has a slope of 2x:


The area above the x-axis and under the curve `y = sqrt(1/x - 1)` for `1/2 ≤ x ≤ 1` is:


From the differential equation of the family of circles touching the y-axis at origin


Form the differential equation of the family of hyperbola having foci on x-axis and centre at origin.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×