Advertisements
Advertisements
Question
Find the differential equation of the family of curves y = Ae2x + B.e–2x.
Solution
y = Ae2x + B.e–2x.
`("d"y)/("d"x) = 2"Ae"^(2x) - 2"B"e"^(-2x)` and `("d"^2y)/("dx"^2) = 4"Ae"^(2x) + 4"Be"^(-2x)`
Thus `("d"^2y)/("dx"^2) = 4y`
i.e., `("d"^2y)/("dx"^2) - 4y` = 0.
APPEARS IN
RELATED QUESTIONS
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
Form the differential equation of the family of circles having centre on y-axis and radius 3 units.
Which of the following differential equation has y = x as one of its particular solution?
A. `(d^2y)/(dx^2) - x^2 (dy)/(dx) + xy = x`
B. `(d^2y)/(dx^2) + x dy/dx + xy = x`
C. `(d^2y)/(dx^2) - x^2 dy/dx + xy = 0`
D. `(d^2y)/(dx^2) + x dy/dx + xy = 0`
Form the differential equation of the family of circles in the first quadrant which touch the coordinate axes.
Find the differential equation of the family of curves y = Ae2x + Be−2x, where A and B are arbitrary constants.
Form the differential equation corresponding to y2 − 2ay + x2 = a2 by eliminating a.
Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x + a)2 + y2 = a2
Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x − a)2 − y2 = a2
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
(x − a)2 − y2 = 1
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4a (x − b)
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = ax3
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = eax
Find one-parameter families of solution curves of the following differential equation:-
\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x}\]
Find one-parameter families of solution curves of the following differential equation:-
\[x\frac{dy}{dx} + y = x^4\]
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} - \frac{2xy}{1 + x^2} = x^2 + 2\]
Find one-parameter families of solution curves of the following differential equation:-
\[\left( x + y \right)\frac{dy}{dx} = 1\]
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} \cos^2 x = \tan x - y\]
Find one-parameter families of solution curves of the following differential equation:-
\[x \log x\frac{dy}{dx} + y = 2 \log x\]
Find one-parameter families of solution curves of the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 \log x\]
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
Find the area of the region bounded by the curves (x -1)2 + y2 = 1 and x2 + y2 = 1, using integration.
The solution of the differential equation `2x * "dy"/"dx" y` = 3 represents a family of ______.
Find the equation of the curve through the point (1, 0) if the slope of the tangent to the curve at any point (x, y) is `(y - 1)/(x^2 + x)`
Family y = Ax + A3 of curves is represented by the differential equation of degree ______.
The differential equation of the family of curves x2 + y2 – 2ay = 0, where a is arbitrary constant, is ______.
The curve for which the slope of the tangent at any point is equal to the ratio of the abcissa to the ordinate of the point is ______.
The differential equation of the family of curves y2 = 4a(x + a) is ______.
Form the differential equation of family of circles having centre on y-axis and raduis 3 units