English

Find the differential equation of the family of curves y = Ae2x + B.e–2x. - Mathematics

Advertisements
Advertisements

Question

Find the differential equation of the family of curves y = Ae2x + B.e–2x.

Sum

Solution

y = Ae2x + B.e–2x.

`("d"y)/("d"x) = 2"Ae"^(2x) - 2"B"e"^(-2x)` and `("d"^2y)/("dx"^2) = 4"Ae"^(2x) + 4"Be"^(-2x)`

Thus `("d"^2y)/("dx"^2) = 4y`

i.e., `("d"^2y)/("dx"^2) - 4y` = 0.

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Differential Equations - Solved Examples [Page 180]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 9 Differential Equations
Solved Examples | Q 1 | Page 180

RELATED QUESTIONS

Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.


Form the differential equation of the family of circles having centre on y-axis and radius 3 units.

 

Which of the following differential equation has y = x as one of its particular solution?

A. `(d^2y)/(dx^2) - x^2 (dy)/(dx) + xy = x`

B. `(d^2y)/(dx^2) + x dy/dx + xy = x`

C. `(d^2y)/(dx^2) - x^2 dy/dx + xy = 0`

D. `(d^2y)/(dx^2) + x dy/dx + xy = 0`

 

 

 


Form the differential equation of the family of circles in the first quadrant which touch the coordinate axes.


Find the differential equation of the family of curves y = Ae2x + Be−2x, where A and B are arbitrary constants.


Form the differential equation corresponding to y2 − 2ay + x2 = a2 by eliminating a.


Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x + a)2 + y2 = a2


Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x − a)2 − y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
(x − a)2 − y2 = 1


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4a (x − b)

 


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = ax3


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = eax


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x}\]


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} + y = x^4\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} - \frac{2xy}{1 + x^2} = x^2 + 2\]


Find one-parameter families of solution curves of the following differential equation:-

\[\left( x + y \right)\frac{dy}{dx} = 1\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} \cos^2 x = \tan x - y\]


Find one-parameter families of solution curves of the following differential equation:-

\[x \log x\frac{dy}{dx} + y = 2 \log x\]


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 \log x\]


Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Find the area of the region bounded by the curves (x -1)2 + y2 = 1 and x2 + y2 = 1, using integration.


The solution of the differential equation `2x * "dy"/"dx" y` = 3 represents a family of ______.


Find the equation of the curve through the point (1, 0) if the slope of the tangent to the curve at any point (x, y) is `(y - 1)/(x^2 + x)`


Family y = Ax + A3 of curves is represented by the differential equation of degree ______.


The differential equation of the family of curves x2 + y2 – 2ay = 0, where a is arbitrary constant, is ______.


The curve for which the slope of the tangent at any point is equal to the ratio of the abcissa to the ordinate of the point is ______.


The differential equation of the family of curves y2 = 4a(x + a) is ______.


Form the differential equation of family of circles having centre on y-axis and raduis 3 units


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×