Advertisements
Advertisements
Questions
Find one-parameter families of solution curves of the following differential equation:-
\[x\frac{dy}{dx} + y = x^4\]
Solve the following differential equation:-
\[x\frac{dy}{dx} + y = x^4\]
Solution
We have,
\[x\frac{dy}{dx} + y = x^4 \]
\[ \Rightarrow \frac{dy}{dx} + \frac{1}{x}y = x^3 . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dy}{dx} + Py = Q\]
where
\[P = \frac{1}{x} \]
\[Q = x^3 \]
\[ \therefore I . F . = e^{\int P\ dx} \]
\[ = e^{\int\frac{1}{x} dx} \]
\[ = e^{\log x} \]
\[ = x\]
\[\text{ Multiplying both sides of }\left( 1 \right)\text{ by }x, \text{ we get }\]
\[x \left( \frac{dy}{dx} + \frac{1}{x}y \right) = x . x^3 \]
\[ \Rightarrow x\frac{dy}{dx} + y = x^4 \]
Integrating both sides with respect to x, we get
\[xy = \int x^4 dx + C\]
\[ \Rightarrow xy = \frac{x^5}{5} + C\]
\[ \Rightarrow y = \frac{x^4}{5} + \frac{C}{x}\]
\[\text{ Hence, }y = \frac{x^4}{5} + \frac{C}{x}\text{ is the required solution.}\]
APPEARS IN
RELATED QUESTIONS
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
Which of the following differential equations has y = c1 ex + c2 e–x as the general solution?
(A) `(d^2y)/(dx^2) + y = 0`
(B) `(d^2y)/(dx^2) - y = 0`
(C) `(d^2y)/(dx^2) + 1 = 0`
(D) `(d^2y)/(dx^2) - 1 = 0`
Form the differential equation representing the family of curves given by (x – a)2 + 2y2 = a2, where a is an arbitrary constant.
Form the differential equation of the family of circles in the first quadrant which touch the coordinate axes.
For the curve y = 5x – 2x3, if x increases at the rate of 2 units/sec, then find the rate of change of the slope of the curve when x = 3
Form the differential equation of the family of curves represented by y2 = (x − c)3.
Form the differential equation corresponding to y = emx by eliminating m.
Find the differential equation of the family of curves y = Ae2x + Be−2x, where A and B are arbitrary constants.
Form the differential equation corresponding to y2 − 2ay + x2 = a2 by eliminating a.
Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x − a)2 − y2 = a2
Form the differential equation of the family of curves represented by the equation (a being the parameter):
(x − a)2 + 2y2 = a2
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = a2
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 − y2 = a2
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4a (x − b)
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = ax3
Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x\]
For the differential equation xy \[\frac{dy}{dx}\] = (x + 2) (y + 2). Find the solution curve passing through the point (1, −1).
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} - y = \cos 2x\]
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} + y \cos x = e^{\sin x} \cos x\]
Find one-parameter families of solution curves of the following differential equation:-
\[\left( x + y \right)\frac{dy}{dx} = 1\]
Find one-parameter families of solution curves of the following differential equation:-
\[e^{- y} \sec^2 y dy = dx + x dy\]
Write the order of the differential equation representing the family of curves y = ax + a3.
The family of curves in which the sub tangent at any point of a curve is double the abscissae, is given by
Find the area of the region bounded by the curves (x -1)2 + y2 = 1 and x2 + y2 = 1, using integration.
Form the differential equation representing the family of curves y = A sin x, by eliminating the arbitrary constant A.
Find the differential equation of the family of lines through the origin.
Find the equation of a curve passing through origin and satisfying the differential equation `(1 + x^2) "dy"/"dx" + 2xy` = 4x2
Form the differential equation by eliminating A and B in Ax2 + By2 = 1
Find the equation of the curve through the point (1, 0) if the slope of the tangent to the curve at any point (x, y) is `(y - 1)/(x^2 + x)`
Find the equation of a curve passing through the point (1, 1). If the tangent drawn at any point P(x, y) on the curve meets the co-ordinate axes at A and B such that P is the mid-point of AB.
Family y = Ax + A3 of curves is represented by the differential equation of degree ______.
The curve for which the slope of the tangent at any point is equal to the ratio of the abcissa to the ordinate of the point is ______.
Differential equation representing the family of curves y = ex (Acosx + Bsinx) is `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + 2y` = 0
Form the differential equation of family of circles having centre on y-axis and raduis 3 units