Advertisements
Advertisements
प्रश्न
Find one-parameter families of solution curves of the following differential equation:-
\[x\frac{dy}{dx} + y = x^4\]
Solve the following differential equation:-
\[x\frac{dy}{dx} + y = x^4\]
उत्तर
We have,
\[x\frac{dy}{dx} + y = x^4 \]
\[ \Rightarrow \frac{dy}{dx} + \frac{1}{x}y = x^3 . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dy}{dx} + Py = Q\]
where
\[P = \frac{1}{x} \]
\[Q = x^3 \]
\[ \therefore I . F . = e^{\int P\ dx} \]
\[ = e^{\int\frac{1}{x} dx} \]
\[ = e^{\log x} \]
\[ = x\]
\[\text{ Multiplying both sides of }\left( 1 \right)\text{ by }x, \text{ we get }\]
\[x \left( \frac{dy}{dx} + \frac{1}{x}y \right) = x . x^3 \]
\[ \Rightarrow x\frac{dy}{dx} + y = x^4 \]
Integrating both sides with respect to x, we get
\[xy = \int x^4 dx + C\]
\[ \Rightarrow xy = \frac{x^5}{5} + C\]
\[ \Rightarrow y = \frac{x^4}{5} + \frac{C}{x}\]
\[\text{ Hence, }y = \frac{x^4}{5} + \frac{C}{x}\text{ is the required solution.}\]
APPEARS IN
संबंधित प्रश्न
Form the differential equation of the family of ellipses having foci on y-axis and centre at origin.
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at origin.
Form the differential equation of the family of circles having centre on y-axis and radius 3 units.
Which of the following differential equations has y = c1 ex + c2 e–x as the general solution?
(A) `(d^2y)/(dx^2) + y = 0`
(B) `(d^2y)/(dx^2) - y = 0`
(C) `(d^2y)/(dx^2) + 1 = 0`
(D) `(d^2y)/(dx^2) - 1 = 0`
Form the differential equation of the family of circles in the first quadrant which touch the coordinate axes.
Form the differential equation from the following primitive where constants are arbitrary:
y2 = 4ax
Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x + a)2 + y2 = a2
Form the differential equation of the family of curves represented by the equation (a being the parameter):
(x − a)2 + 2y2 = a2
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + (y − b)2 = 1
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4a (x − b)
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Show that y = bex + ce2x is a solution of the differential equation, \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0\]
For the differential equation xy \[\frac{dy}{dx}\] = (x + 2) (y + 2). Find the solution curve passing through the point (1, −1).
Find one-parameter families of solution curves of the following differential equation:-
\[\left( x \log x \right)\frac{dy}{dx} + y = \log x\]
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} - \frac{2xy}{1 + x^2} = x^2 + 2\]
Find one-parameter families of solution curves of the following differential equation:-
\[e^{- y} \sec^2 y dy = dx + x dy\]
Find one-parameter families of solution curves of the following differential equation:-
\[x \log x\frac{dy}{dx} + y = 2 \log x\]
Find one-parameter families of solution curves of the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 \log x\]
Write the order of the differential equation representing the family of curves y = ax + a3.
The differential equation which represents the family of curves y = eCx is
The family of curves in which the sub tangent at any point of a curve is double the abscissae, is given by
Form the differential equation of the family of ellipses having foci on y-axis and centre at the origin.
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
Find the area of the region bounded by the curves (x -1)2 + y2 = 1 and x2 + y2 = 1, using integration.
Find the differential equation of system of concentric circles with centre (1, 2).
Family y = Ax + A3 of curves is represented by the differential equation of degree ______.
The differential equation `y ("d"y)/("d"x) + "c"` represents: ______.
The differential equation of the family of curves x2 + y2 – 2ay = 0, where a is arbitrary constant, is ______.
The curve for which the slope of the tangent at any point is equal to the ratio of the abcissa to the ordinate of the point is ______.
The differential equation of the family of curves y2 = 4a(x + a) is ______.
The differential equation representing the family of circles x2 + (y – a)2 = a2 will be of order two.
Differential equation representing the family of curves y = ex (Acosx + Bsinx) is `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + 2y` = 0
The area above the x-axis and under the curve `y = sqrt(1/x - 1)` for `1/2 ≤ x ≤ 1` is:
Form the differential equation of the family of hyperbola having foci on x-axis and centre at origin.