मराठी

Form the Differential Equation of the Family of Circles in the Second Quadrant and Touching the Coordinate Axes. - Mathematics

Advertisements
Advertisements

प्रश्न

Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.

बेरीज

उत्तर

The equation of the family of circles in the second quadrant and touching the co-ordinate axes is
\[\left( x + a \right)^2 + \left( y - a \right)^2 = a^2 \]
\[ \Rightarrow x^2 + 2ax + a^2 + y^2 - 2ay + a^2 = a^2 \]
\[ \Rightarrow x^2 + 2ax + y^2 - 2ay + a^2 = 0 ..........(1)\]
where `a` is a parameter.
As this equation contains one parameter, we shall get a differential equation of first order.
Differentiating equation (1) with respect to x, we get
\[2x + 2a + 2y\frac{dy}{dx} - 2a\frac{dy}{dx} = 0\]
\[ \Rightarrow x + y\frac{dy}{dx} + a - a\frac{dy}{dx} = 0\]
\[ \Rightarrow \left( x + y\frac{dy}{dx} \right) + a\left( 1 - \frac{dy}{dx} \right) = 0\]
\[ \Rightarrow a = \frac{x + y\frac{dy}{dx}}{\frac{dy}{dx} - 1} ..........(2)\]
From (1) and (2), we get 
\[x^2 + 2x\left( \frac{x + y\frac{dy}{dx}}{\frac{dy}{dx} - 1} \right) + y^2 - 2y\left( \frac{x + y\frac{dy}{dx}}{\frac{dy}{dx} - 1} \right) + \left( \frac{x + y\frac{dy}{dx}}{\frac{dy}{dx} - 1} \right)^2 = 0\]
\[ \Rightarrow x^2 \left( \frac{dy}{dx} - 1 \right)^2 + 2x\left( x + y\frac{dy}{dx} \right)\left( \frac{dy}{dx} - 1 \right) + y^2 \left( \frac{dy}{dx} - 1 \right)^2 - 2y\left( x + y\frac{dy}{dx} \right)\left( \frac{dy}{dx} - 1 \right) + \left( x + y\frac{dy}{dx} \right)^2 = 0\]
\[ \Rightarrow x^2 \left( \frac{dy}{dx} \right)^2 - 2 x^2 \left( \frac{dy}{dx} \right) + x^2 + 2x\left[ x\frac{dy}{dx} - x + y \left( \frac{dy}{dx} \right)^2 - y\frac{dy}{dx} \right] + y^2 \left[ \left( \frac{dy}{dx} \right)^2 - 2\frac{dy}{dx} + 1 \right] - 2y\left[ x\frac{dy}{dx} - x + y \left( \frac{dy}{dx} \right)^2 - y\frac{dy}{dx} \right] + x^2 + 2xy\frac{dy}{dx} + y^2 \left( \frac{dy}{dx} \right)^2 = 0\]
\[ \Rightarrow x^2 + 2xy\frac{dy}{dx} + y^2 \left( \frac{dy}{dx} \right)^2 = x^2 + 2xy + y^2 + \left( x^2 + 2xy + y^2 \right) \left( \frac{dy}{dx} \right)^2 \]
\[ \Rightarrow \left( x + y\frac{dy}{dx} \right)^2 = \left( x + y \right)^2 \left[ 1 + \left( \frac{dy}{dx} \right)^2 \right] \]
It is the required differential equation.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.02 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.02 | Q 19 | पृष्ठ १७

संबंधित प्रश्‍न

Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.


Form the differential equation of the family of hyperbolas having foci on x-axis and centre at origin.


Form the differential equation of the family of circles having centre on y-axis and radius 3 units.

 

Which of the following differential equation has y = x as one of its particular solution?

A. `(d^2y)/(dx^2) - x^2 (dy)/(dx) + xy = x`

B. `(d^2y)/(dx^2) + x dy/dx + xy = x`

C. `(d^2y)/(dx^2) - x^2 dy/dx + xy = 0`

D. `(d^2y)/(dx^2) + x dy/dx + xy = 0`

 

 

 


Form the differential equation representing the family of curves given by (x – a)2 + 2y2 = a2, where a is an arbitrary constant.


Find the differential equation of the family of curves, x = A cos nt + B sin nt, where A and B are arbitrary constants.


Form the differential equation corresponding to y2 − 2ay + x2 = a2 by eliminating a.


Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x − a)2 − y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4ax


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + (y − b)2 = 1


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = ax3


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = eax


Show that y = bex + ce2x is a solution of the differential equation, \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0\]


Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} + 3y = e^{mx}\], m is a given real number.


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} + y = x^4\]


Find one-parameter families of solution curves of the following differential equation:-

\[\left( x \log x \right)\frac{dy}{dx} + y = \log x\]


Find one-parameter families of solution curves of the following differential equation:-

\[e^{- y} \sec^2 y dy = dx + x dy\]


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 \log x\]


Write the order of the differential equation representing the family of curves y = ax + a3.


The family of curves in which the sub tangent at any point of a curve is double the abscissae, is given by


Form the differential equation representing the family of curves y = mx, where m is an arbitrary constant.


Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Find the differential equation of the family of curves y = Ae2x + B.e–2x.


The solution of the differential equation `2x * "dy"/"dx" y` = 3 represents a family of ______.


The differential equation representing the family of curves y = A sinx + B cosx is ______.


Form the differential equation by eliminating A and B in Ax2 + By2 = 1


Find the differential equation of system of concentric circles with centre (1, 2).


Find the equation of a curve passing through origin if the slope of the tangent to the curve at any point (x, y) is equal to the square of the difference of the abcissa and ordinate of the point.


The differential equation `y ("d"y)/("d"x) + "c"` represents: ______.


The differential equation of the family of curves x2 + y2 – 2ay = 0, where a is arbitrary constant, is ______.


Form the differential equation of the family of hyperbola having foci on x-axis and centre at origin.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×