Advertisements
Advertisements
प्रश्न
Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x − a)2 − y2 = a2
उत्तर
The equation of the family of curves is \[\left( 2x - a \right)^2 - y^2 = a^2 \]
\[ \Rightarrow 4 x^2 - 4ax + a^2 - y^2 = a^2 \]
\[ \Rightarrow 4 x^2 - 4ax - y^2 = 0 . . . \left( 1 \right)\]
where a is a parameter.
As this equation has only one parameter, we shall get a differential equation of first order.
Differentiating (1) with respect to x, we get
\[8x - 4a - 2y\frac{dy}{dx} = 0\]
\[ \Rightarrow - y\frac{dy}{dx} + 4x = 2a . . . \left( 2 \right)\]
Now, from (1), we get
\[2a = \frac{4 x^2 - y^2}{2x}\] ...(3)
From (2) and (3), we get
\[- y\frac{dy}{dx} + 4x = \frac{4 x^2 - y^2}{2x}\]
\[ \Rightarrow - 2xy\frac{dy}{dx} + 8 x^2 = 4 x^2 - y^2 \]
\[ \Rightarrow - 2xy\frac{dy}{dx} + 4 x^2 + y^2 = 0\]
\[ \Rightarrow 2xy\frac{dy}{dx} = 4 x^2 + y^2 \]
It is the required differential equation.
APPEARS IN
संबंधित प्रश्न
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
Which of the following differential equation has y = x as one of its particular solution?
A. `(d^2y)/(dx^2) - x^2 (dy)/(dx) + xy = x`
B. `(d^2y)/(dx^2) + x dy/dx + xy = x`
C. `(d^2y)/(dx^2) - x^2 dy/dx + xy = 0`
D. `(d^2y)/(dx^2) + x dy/dx + xy = 0`
Form the differential equation of the family of circles in the first quadrant which touch the coordinate axes.
For the curve y = 5x – 2x3, if x increases at the rate of 2 units/sec, then find the rate of change of the slope of the curve when x = 3
Form the differential equation of the family of curves represented by y2 = (x − c)3.
Form the differential equation from the following primitive where constants are arbitrary:
y2 = 4ax
Form the differential equation from the following primitive where constants are arbitrary:
y = cx + 2c2 + c3
Find the differential equation of the family of curves, x = A cos nt + B sin nt, where A and B are arbitrary constants.
Form the differential equation corresponding to y2 − 2ay + x2 = a2 by eliminating a.
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4ax
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
(x − a)2 − y2 = 1
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4a (x − b)
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = eax
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Show that y = bex + ce2x is a solution of the differential equation, \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0\]
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} + 3y = e^{mx}\], m is a given real number.
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} - \frac{2xy}{1 + x^2} = x^2 + 2\]
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} \cos^2 x = \tan x - y\]
Find one-parameter families of solution curves of the following differential equation:-
\[e^{- y} \sec^2 y dy = dx + x dy\]
Find one-parameter families of solution curves of the following differential equation:-
\[x \log x\frac{dy}{dx} + y = 2 \log x\]
Find one-parameter families of solution curves of the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 \log x\]
The differential equation which represents the family of curves y = eCx is
The family of curves in which the sub tangent at any point of a curve is double the abscissae, is given by
Form the differential equation of the family of ellipses having foci on y-axis and centre at the origin.
Find the area of the region bounded by the curves (x -1)2 + y2 = 1 and x2 + y2 = 1, using integration.
The differential equation representing the family of curves y = A sinx + B cosx is ______.
Find the equation of a curve passing through origin if the slope of the tangent to the curve at any point (x, y) is equal to the square of the difference of the abcissa and ordinate of the point.
The differential equation `y ("d"y)/("d"x) + "c"` represents: ______.
The curve for which the slope of the tangent at any point is equal to the ratio of the abcissa to the ordinate of the point is ______.
The differential equation of the family of curves y2 = 4a(x + a) is ______.
Find the equation of the curve at every point of which the tangent line has a slope of 2x:
The area above the x-axis and under the curve `y = sqrt(1/x - 1)` for `1/2 ≤ x ≤ 1` is:
From the differential equation of the family of circles touching the y-axis at origin
Form the differential equation of family of circles having centre on y-axis and raduis 3 units