Advertisements
Advertisements
प्रश्न
Find the differential equation of the family of curves, x = A cos nt + B sin nt, where A and B are arbitrary constants.
उत्तर
The equation of the family of curves is \[x = A\cos nt + B\sin nt\] .........(1)
where `A" and "B` are arbitrary constants.
This equation contains two arbitrary constants, so we shall get a differential equation of second order.
Differentiating equation (1) with respect to t, we get
\[\frac{dx}{dt} = - \text{ An }\sin\text{ nt }+ \text{ Bn }\cos nt\] ............(2)
Differentiating equation (2) with respect to t, we get
\[\frac{d^2 x}{d t^2} = - A n^2 \cos nt - B n^2 \sin nt\]
\[ \Rightarrow \frac{d^2 x}{d t^2} = - n^2 \left( A\cos nt + B\sin nt \right)\]
\[ \Rightarrow \frac{d^2 x}{d t^2} = - n^2 x\]
\[ \Rightarrow \frac{d^2 x}{d t^2} + n^2 x = 0 \]
It is the required differential equation .
APPEARS IN
संबंधित प्रश्न
Form the differential equation of the family of circles having centre on y-axis and radius 3 units.
Form the differential equation of the family of circles in the first quadrant which touch the coordinate axes.
Show that the family of curves for which `dy/dx = (x^2+y^2)/(2x^2)` is given by x2 - y2 = cx
Form the differential equation of the family of curves represented by y2 = (x − c)3.
Form the differential equation corresponding to y2 = a (b − x2) by eliminating a and b.
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = a2
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4ax
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + (y − b)2 = 1
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
(x − a)2 − y2 = 1
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4a (x − b)
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = ax3
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = eax
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} - \frac{2xy}{1 + x^2} = x^2 + 2\]
Find one-parameter families of solution curves of the following differential equation:-
\[\left( x + y \right)\frac{dy}{dx} = 1\]
Find one-parameter families of solution curves of the following differential equation:-
\[e^{- y} \sec^2 y dy = dx + x dy\]
Find one-parameter families of solution curves of the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 \log x\]
The differential equation which represents the family of curves y = eCx is
The family of curves in which the sub tangent at any point of a curve is double the abscissae, is given by
Form the differential equation representing the family of curves y = mx, where m is an arbitrary constant.
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
Form the differential equation representing the family of curves `y2 = m(a2 - x2) by eliminating the arbitrary constants 'm' and 'a'.
Form the differential equation representing the family of curves y = e2x (a + bx), where 'a' and 'b' are arbitrary constants.
Form the differential equation representing the family of curves y = A sin x, by eliminating the arbitrary constant A.
Find the differential equation of the family of lines through the origin.
Find the equation of a curve passing through the point (1, 1) if the perpendicular distance of the origin from the normal at any point P(x, y) of the curve is equal to the distance of P from the x-axis.
The differential equation representing the family of curves y = A sinx + B cosx is ______.
Form the differential equation of all circles which pass through origin and whose centres lie on y-axis.
Find the differential equation of system of concentric circles with centre (1, 2).
Find the equation of a curve passing through origin if the slope of the tangent to the curve at any point (x, y) is equal to the square of the difference of the abcissa and ordinate of the point.
Find the equation of a curve passing through the point (1, 1). If the tangent drawn at any point P(x, y) on the curve meets the co-ordinate axes at A and B such that P is the mid-point of AB.
Family y = Ax + A3 of curves is represented by the differential equation of degree ______.
The curve for which the slope of the tangent at any point is equal to the ratio of the abcissa to the ordinate of the point is ______.
Form the differential equation of family of circles having centre on y-axis and raduis 3 units