मराठी

Represent the Following Families of Curves by Forming the Corresponding Differential Equations (A, B Being Parameters): X2 + (Y − B)2 = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + (y − b)2 = 1

बेरीज

उत्तर

The equation of family of curves is \[x^2 + \left( y - b \right)^2 = 1.........(1)\]

where `b` is a parameter.

As this equation contains only one arbitrary constant, we shall get a differential equation of first order.

Differentiating (1) with respect to x, we get

\[2x + 2\left( y - b \right)\frac{dy}{dx} = 0\]

\[ \Rightarrow 2x + 2\sqrt{1 - x^2}\frac{dy}{dx} = 0 .......\left[ \text{Using }\left( 1 \right) \right]\]

\[ \Rightarrow x = - \sqrt{1 - x^2}\frac{dy}{dx}\]

\[ \Rightarrow x^2 = \left( 1 - x^2 \right) \left( \frac{dy}{dx} \right)^2 \]

\[ \Rightarrow x^2 = \left( \frac{dy}{dx} \right)^2 - x^2 \left( \frac{dy}{dx} \right)^2 \]

\[ \Rightarrow x^2 \left[ 1 + \left( \frac{dy}{dx} \right)^2 \right] = \left( \frac{dy}{dx} \right)^2 \]

It is the required differential equation.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.02 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.02 | Q 16.04 | पृष्ठ १७

संबंधित प्रश्‍न

Form the differential equation of the family of ellipses having foci on y-axis and centre at origin.


Form the differential equation of the family of hyperbolas having foci on x-axis and centre at origin.


Form the differential equation representing the family of curves given by (x – a)2 + 2y2 = a2, where a is an arbitrary constant.


Form the differential equation from the following primitive where constants are arbitrary:
xy = a2


Form the differential equation from the following primitive where constants are arbitrary:
y = ax2 + bx + c


Find the differential equation of the family of curves y = Ae2x + Be−2x, where A and B are arbitrary constants.


Form the differential equation corresponding to y2 = a (b − x2) by eliminating a and b.


Form the differential equation corresponding to y2 − 2ay + x2 = a2 by eliminating a.


Form the differential equation of the family of curves represented by the equation (a being the parameter):
 (x − a)2 + 2y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4ax


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
(x − a)2 − y2 = 1


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):

\[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\]

 


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} + y = x^4\]


Find one-parameter families of solution curves of the following differential equation:-

\[\left( x + y \right)\frac{dy}{dx} = 1\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} \cos^2 x = \tan x - y\]


Find one-parameter families of solution curves of the following differential equation:-

\[x \log x\frac{dy}{dx} + y = 2 \log x\]


Write the order of the differential equation representing the family of curves y = ax + a3.


Form the differential equation of the family of ellipses having foci on y-axis and centre at the origin.


Find the area of the region bounded by the curves (x -1)2 + y2 = 1 and x2 + y2 = 1, using integration.


Form the differential equation representing the family of curves y = A sin x, by eliminating the arbitrary constant A.


Find the differential equation of the family of lines through the origin.


The differential equation representing the family of curves y = A sinx + B cosx is ______.


Family y = Ax + A3 of curves is represented by the differential equation of degree ______.


The differential equation `y ("d"y)/("d"x) + "c"` represents: ______.


The curve for which the slope of the tangent at any point is equal to the ratio of the abcissa to the ordinate of the point is ______.


The differential equation of the family of curves y2 = 4a(x + a) is ______.


Differential equation representing the family of curves y = ex (Acosx + Bsinx) is `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + 2y` = 0


Find the equation of the curve at every point of which the tangent line has a slope of 2x:


The area above the x-axis and under the curve `y = sqrt(1/x - 1)` for `1/2 ≤ x ≤ 1` is:


From the differential equation of the family of circles touching the y-axis at origin


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×