मराठी

Form the Differential Equation Corresponding to Y2 − 2ay + X2 = A2 by Eliminating A. - Mathematics

Advertisements
Advertisements

प्रश्न

Form the differential equation corresponding to y2 − 2ay + x2 = a2 by eliminating a.

उत्तर

The equation of the family of curves is \[y^2 - 2ay + x^2 = a^2\]                                         ...(1)
where a  is a parameter.
This equation contains only one arbitrary constant, so we shall get a differential equation of first order.
Differentiating equation (1) with respect to x, we get
\[2y\frac{dy}{dx} - 2a\frac{dy}{dx} + 2x = 0\]
\[ \Rightarrow 2y\frac{dy}{dx} + 2x = 2a\frac{dy}{dx}\]
\[ \Rightarrow y + \frac{x}{\frac{dy}{dx}} = a\]
Substituting the value of a in equation (2), we get
\[y^2 - 2\left( y + \frac{x}{\frac{dy}{dx}} \right)y + x^2 = \left( y + \frac{x}{\frac{dy}{dx}} \right)^2 \]
\[ \Rightarrow \frac{y^2 \frac{dy}{dx} - 2\left( y\frac{dy}{dx} + x \right)y + x^2 \frac{dy}{dx}}{\frac{dy}{dx}} = \frac{\left( y\frac{dy}{dx} + x \right)^2}{\left( \frac{dy}{dx} \right)^2}\]
\[ \Rightarrow y^2 \left( \frac{dy}{dx} \right)^2 - 2 y^2 \left( \frac{dy}{dx} \right)^2 - 2xy\left( \frac{dy}{dx} \right) + x^2 \left( \frac{dy}{dx} \right)^2 = y^2 \left( \frac{dy}{dx} \right)^2 + 2xy\left( \frac{dy}{dx} \right) + x^2 \]
\[ \Rightarrow \left( x^2 - 2 y^2 \right) \left( \frac{dy}{dx} \right)^2 - 4xy\left( \frac{dy}{dx} \right) - x^2 = 0 \]
It is the required differential equation.


 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.02 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.02 | Q 7 | पृष्ठ १६

संबंधित प्रश्‍न

Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.


Form the differential equation representing the family of curves given by (x – a)2 + 2y2 = a2, where a is an arbitrary constant.


Form the differential equation of the family of circles in the first quadrant which touch the coordinate axes.


Show that the family of curves for which `dy/dx = (x^2+y^2)/(2x^2)` is given by  x2 - y2 = cx


Form the differential equation of the family of curves represented by y2 = (x − c)3.


Form the differential equation corresponding to y = emx by eliminating m.


Form the differential equation from the following primitive where constants are arbitrary:
y2 = 4ax


Form the differential equation from the following primitive where constants are arbitrary:
y = cx + 2c2 + c3


Form the differential equation from the following primitive where constants are arbitrary:
y = ax2 + bx + c


Find the differential equation of the family of curves, x = A cos nt + B sin nt, where A and B are arbitrary constants.


Form the differential equation corresponding to y2 = a (b − x2) by eliminating a and b.


Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x + a)2 + y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 − y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4ax


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
(x − a)2 − y2 = 1


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):

\[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\]

 


Show that y = bex + ce2x is a solution of the differential equation, \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0\]


Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x\]


For the differential equation xy \[\frac{dy}{dx}\] = (x + 2) (y + 2). Find the solution curve passing through the point (1, −1).


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x}\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} - \frac{2xy}{1 + x^2} = x^2 + 2\]


Find one-parameter families of solution curves of the following differential equation:-

\[e^{- y} \sec^2 y dy = dx + x dy\]


Form the differential equation representing the family of curves y = mx, where m is an arbitrary constant.


Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


The solution of the differential equation `2x * "dy"/"dx" y` = 3 represents a family of ______.


The differential equation representing the family of curves y = A sinx + B cosx is ______.


Form the differential equation by eliminating A and B in Ax2 + By2 = 1


Find the equation of the curve through the point (1, 0) if the slope of the tangent to the curve at any point (x, y) is `(y - 1)/(x^2 + x)`


Find the equation of a curve passing through the point (1, 1). If the tangent drawn at any point P(x, y) on the curve meets the co-ordinate axes at A and B such that P is the mid-point of AB.


Family y = Ax + A3 of curves will correspond to a differential equation of order ______.


The differential equation representing the family of circles x2 + (y – a)2 = a2 will be of order two.


Differential equation representing the family of curves y = ex (Acosx + Bsinx) is `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + 2y` = 0


The area above the x-axis and under the curve `y = sqrt(1/x - 1)` for `1/2 ≤ x ≤ 1` is:


From the differential equation of the family of circles touching the y-axis at origin


Form the differential equation of the family of hyperbola having foci on x-axis and centre at origin.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×