मराठी

The differential equation of the family of curves y2 = 4a(x + a) is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The differential equation of the family of curves y2 = 4a(x + a) is ______.

पर्याय

  • `y^2 - 4 ("d"y)/("d"x)(x + ("d"y)/("d"x))`

  • `2y ("d"y)/("d"x)` = 4a

  • `y ("d"^2y)/("d"x^2) + (("d"y)/("d"x))^2` = 0

  • `2x ("d"y)/("d"x) + y(("d"y)/("d"x))^2 - y`

MCQ
रिकाम्या जागा भरा

उत्तर

The differential equation of the family of curves y2 = 4a(x + a) is `2x ("d"y)/("d"x) + y(("d"y)/("d"x))^2 - y`.

Explanation:

The given equation of family of curves is y2 = 4a(x + a) 

⇒ y2 = 4ax + 4a  .......(1)

Differentiating both sides, w.r.t. x, we get

`2y * ("d"y)/("d"x)` = 4a

⇒ `y * ("d"y)/("d"x)` = 2a

⇒ `y/2 ("d"y)/("d"x)` = a

Now, putting the value of a in equation (1) we get

`y^2 = 4x(y/2 ("d"y)/("d"x)) + 4(y/2 * ("d"y)/("d"x))^2`

⇒ `y^2 = 2xy ("d"y)/("d"x) + y^2 (("d"y)/("d"x))^2`

⇒ y = `2x ("d"y)/("d"x) + y(("d"y)/("d"x))^2`

⇒ `2x * ("d"y)/("d"x) + y * (("d"y)/("d"x))^2 - y` = 0

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Equations - Exercise [पृष्ठ २००]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 9 Differential Equations
Exercise | Q 69 | पृष्ठ २००

संबंधित प्रश्‍न

Which of the following differential equation has y = x as one of its particular solution?

A. `(d^2y)/(dx^2) - x^2 (dy)/(dx) + xy = x`

B. `(d^2y)/(dx^2) + x dy/dx + xy = x`

C. `(d^2y)/(dx^2) - x^2 dy/dx + xy = 0`

D. `(d^2y)/(dx^2) + x dy/dx + xy = 0`

 

 

 


Form the differential equation representing the family of curves given by (x – a)2 + 2y2 = a2, where a is an arbitrary constant.


Form the differential equation from the following primitive where constants are arbitrary:
y = ax2 + bx + c


Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x + a)2 + y2 = a2


Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x − a)2 − y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 − y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):

\[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\]

 


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4a (x − b)

 


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = ax3


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = eax


Show that y = bex + ce2x is a solution of the differential equation, \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0\]


Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} - y = \cos 2x\]


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x}\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} \cos^2 x = \tan x - y\]


Form the differential equation of the family of ellipses having foci on y-axis and centre at the origin.


Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Find the area of the region bounded by the curves (x -1)2 + y2 = 1 and x2 + y2 = 1, using integration.


Find the equation of a curve passing through the point (1, 1) if the perpendicular distance of the origin from the normal at any point P(x, y) of the curve is equal to the distance of P from the x-axis.


Find the equation of the curve through the point (1, 0) if the slope of the tangent to the curve at any point (x, y) is `(y - 1)/(x^2 + x)`


Find the equation of a curve passing through origin if the slope of the tangent to the curve at any point (x, y) is equal to the square of the difference of the abcissa and ordinate of the point.


Find the equation of a curve passing through the point (1, 1). If the tangent drawn at any point P(x, y) on the curve meets the co-ordinate axes at A and B such that P is the mid-point of AB.


The differential equation representing the family of circles x2 + (y – a)2 = a2 will be of order two.


Differential equation representing the family of curves y = ex (Acosx + Bsinx) is `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + 2y` = 0


From the differential equation of the family of circles touching the y-axis at origin


Form the differential equation of the family of hyperbola having foci on x-axis and centre at origin.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×