मराठी

Find One-parameter Families of Solution Curves of the Following Differential Equation:- D Y D X − Y = Cos 2 X - Mathematics

Advertisements
Advertisements

प्रश्न

Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} - y = \cos 2x\]

Solve the following differential equation:-

\[\frac{dy}{dx} - y = \cos 2x\]

बेरीज

उत्तर

We have, 
\[\frac{dy}{dx} - y = \cos 2x . . . . . (1)\]
Clearly, it is a linear differential equation of the form
\[\frac{dy}{dx} + Py = Q\]
where
\[P = - 1\]
\[Q = \cos 2x\]
\[ \therefore I . F . = e^{\int P\ dx} \]
\[ = e^{- \int dx} \]
\[ = e^{- x} \]
\[\text{ Multiplying both sides of }(1)\text{ by }e^{- x} ,\text{ we get }\]
\[ e^{- x} \left( \frac{dy}{dx} - y \right) = e^{- x} \cos 2x \]
\[ \Rightarrow e^{- x} \frac{dy}{dx} - e^{- x} y = e^{- x} \cos 2x\]
Integrating both sides with respect to x, we get
\[y e^{- x} = \int e^{- x} \cos 2x dx + C \]
\[ \Rightarrow y e^{- x} = I + C . . . . . (2)\]
Where, 
\[I = \int e^{- x} \cos 2x dx . . . . . (3)\]
\[ \Rightarrow I = \frac{1}{2} e^{- x} \sin 2x - \frac{1}{2}\int\left( - e^{- x} \sin 2x \right) dx\]
\[ \Rightarrow I = \frac{1}{2} e^{- x} \sin 2x + \frac{1}{2}\int e^{- x} \sin 2x dx\]
\[ \Rightarrow I = \frac{1}{2} e^{- x} \sin 2x - \frac{1}{4} e^{- x} \cos 2x - \frac{1}{2} \times \frac{1}{2}\int\left[ \left( - e^{- x} \right) \times \left( - \cos 2x \right) \right] dx\]
\[ \Rightarrow I = \frac{1}{2} e^{- x} \sin 2x - \frac{1}{4} e^{- x} \cos 2x - \frac{1}{4}\int e^{- x} \cos 2x dx\]
\[ \Rightarrow I = \frac{1}{2} e^{- x} \sin 2x - \frac{1}{4} e^{- x} \cos 2x - \frac{1}{4}I .........\left[\text{ From (3)}\right]\]
\[ \Rightarrow \frac{5}{4}I = \frac{1}{2} e^{- x} \sin 2x - \frac{1}{4} e^{- x} \cos 2x\]
\[ \Rightarrow 5I = 2 e^{- x} \sin 2x - e^{- x} \cos 2x\]
\[ \Rightarrow I = \frac{e^{- x}}{5}\left( 2\sin 2x - \cos 2x \right) . . . . . (4)\]
From (2) and (4) we get
\[ \Rightarrow y e^{- x} = \frac{e^{- x}}{5}\left( 2\sin 2x - \cos 2x \right) + C\]
\[ \Rightarrow y = \frac{1}{5}\left( 2\sin 2x - \cos 2x \right) + C e^x \]
\[\text{ Hence, }y = \frac{1}{5}\left( 2\sin 2x - \cos 2x \right) + C e^x\text{ is the required solution.}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.10 [पृष्ठ १०७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.10 | Q 36.02 | पृष्ठ १०७

संबंधित प्रश्‍न

Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.


Form the differential equation of the family of ellipses having foci on y-axis and centre at origin.


Which of the following differential equation has y = x as one of its particular solution?

A. `(d^2y)/(dx^2) - x^2 (dy)/(dx) + xy = x`

B. `(d^2y)/(dx^2) + x dy/dx + xy = x`

C. `(d^2y)/(dx^2) - x^2 dy/dx + xy = 0`

D. `(d^2y)/(dx^2) + x dy/dx + xy = 0`

 

 

 


Form the differential equation of the family of circles in the first quadrant which touch the coordinate axes.


Show that the family of curves for which `dy/dx = (x^2+y^2)/(2x^2)` is given by  x2 - y2 = cx


Form the differential equation corresponding to y = emx by eliminating m.


Form the differential equation from the following primitive where constants are arbitrary:
y2 = 4ax


Form the differential equation from the following primitive where constants are arbitrary:
y = ax2 + bx + c


Find the differential equation of the family of curves, x = A cos nt + B sin nt, where A and B are arbitrary constants.


Form the differential equation corresponding to (x − a)2 + (y − b)2 = r2 by eliminating a and b.


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
(x − a)2 − y2 = 1


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = ax3


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x\]


For the differential equation xy \[\frac{dy}{dx}\] = (x + 2) (y + 2). Find the solution curve passing through the point (1, −1).


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} \cos^2 x = \tan x - y\]


Write the differential equation representing family of curves y = mx, where m is arbitrary constant.


The differential equation which represents the family of curves y = eCx is


The family of curves in which the sub tangent at any point of a curve is double the abscissae, is given by


Form the differential equation representing the family of curves y = mx, where m is an arbitrary constant.


Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Find the equation of a curve whose tangent at any point on it, different from origin, has slope `y + y/x`.


Find the equation of a curve passing through the point (1, 1) if the perpendicular distance of the origin from the normal at any point P(x, y) of the curve is equal to the distance of P from the x-axis.


Form the differential equation by eliminating A and B in Ax2 + By2 = 1


Find the equation of the curve through the point (1, 0) if the slope of the tangent to the curve at any point (x, y) is `(y - 1)/(x^2 + x)`


Find the equation of a curve passing through origin if the slope of the tangent to the curve at any point (x, y) is equal to the square of the difference of the abcissa and ordinate of the point.


Family y = Ax + A3 of curves is represented by the differential equation of degree ______.


The differential equation of the family of curves x2 + y2 – 2ay = 0, where a is arbitrary constant, is ______.


Family y = Ax + A3 of curves will correspond to a differential equation of order ______.


The differential equation of the family of curves y2 = 4a(x + a) is ______.


The differential equation representing the family of circles x2 + (y – a)2 = a2 will be of order two.


Find the equation of the curve at every point of which the tangent line has a slope of 2x:


Form the differential equation of family of circles having centre on y-axis and raduis 3 units


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×