मराठी

Find the equation of a curve whose tangent at any point on it, different from origin, has slope y+yx. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of a curve whose tangent at any point on it, different from origin, has slope `y + y/x`.

बेरीज

उत्तर

Given `"dy"/"dx" = y + y/x`

= `"y"(1 + 1/x)`

⇒ `"dy"/y = (1 + 1/x)"d"x`

Integrating both sides, we get

logy = x + logx + c

⇒ `log(y/x)` = x + c

⇒ `y/x = "e"^(x + "c") `

= `"e"^x * "e"^"c"`

⇒ `y/x` = k . ex

⇒ y = kx . ex.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Equations - Solved Examples [पृष्ठ १८२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 9 Differential Equations
Solved Examples | Q 7 | पृष्ठ १८२

संबंधित प्रश्‍न

Form the differential equation of the family of circles touching the y-axis at the origin.


Form the differential equation of the family of circles having centre on y-axis and radius 3 units.

 

Form the differential equation of the family of curves represented by y2 = (x − c)3.


Form the differential equation from the following primitive where constants are arbitrary:
y2 = 4ax


Find the differential equation of the family of curves y = Ae2x + Be−2x, where A and B are arbitrary constants.


Form the differential equation corresponding to y2 = a (b − x2) by eliminating a and b.


Form the differential equation corresponding to (x − a)2 + (y − b)2 = r2 by eliminating a and b.


Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x + a)2 + y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 − y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
(x − a)2 − y2 = 1


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = ax3


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = ax3


Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x\]


Find one-parameter families of solution curves of the following differential equation:-

\[x \log x\frac{dy}{dx} + y = 2 \log x\]


The differential equation which represents the family of curves y = eCx is


Find the area of the region bounded by the curves (x -1)2 + y2 = 1 and x2 + y2 = 1, using integration.


Find the differential equation of the family of lines through the origin.


Form the differential equation by eliminating A and B in Ax2 + By2 = 1


Find the equation of a curve passing through (2, 1) if the slope of the tangent to the curve at any point (x, y) is `(x^2 + y^2)/(2xy)`.


Find the equation of the curve through the point (1, 0) if the slope of the tangent to the curve at any point (x, y) is `(y - 1)/(x^2 + x)`


Find the equation of a curve passing through the point (1, 1). If the tangent drawn at any point P(x, y) on the curve meets the co-ordinate axes at A and B such that P is the mid-point of AB.


The curve for which the slope of the tangent at any point is equal to the ratio of the abcissa to the ordinate of the point is ______.


The differential equation representing the family of circles x2 + (y – a)2 = a2 will be of order two.


Differential equation representing the family of curves y = ex (Acosx + Bsinx) is `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + 2y` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×