Advertisements
Advertisements
प्रश्न
Find the differential equation of the family of curves y = Ae2x + Be−2x, where A and B are arbitrary constants.
उत्तर
The equation of the family of curves is \[y = A e^{2x} + B e^{- 2x}\] ...(1)
where \[A\text{ and }B\] are arbitrary constants.
This equation contains two arbitrary constants, so we shall get a differential equation of second order.
Differentiating equation (1) with respect to x, we get
Differentiating equation (2) with respect to x, we get
\[\frac{d^2 y}{d x^2} = 4A e^{2x} + 4B e^{- 2x} \]
\[ \Rightarrow \frac{d^2 y}{d x^2} = 4\left( A e^{2x} + B e^{- 2x} \right)\]
\[ \Rightarrow \frac{d^2 y}{d x^2} = 4y\]
It is the required differential equation .
APPEARS IN
संबंधित प्रश्न
Form the differential equation of the family of circles touching the y-axis at the origin.
Form the differential equation of the family of ellipses having foci on y-axis and centre at origin.
Form the differential equation of the family of circles having centre on y-axis and radius 3 units.
For the curve y = 5x – 2x3, if x increases at the rate of 2 units/sec, then find the rate of change of the slope of the curve when x = 3
Show that the family of curves for which `dy/dx = (x^2+y^2)/(2x^2)` is given by x2 - y2 = cx
Find the differential equation of the family of curves, x = A cos nt + B sin nt, where A and B are arbitrary constants.
Form the differential equation corresponding to y2 − 2ay + x2 = a2 by eliminating a.
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = a2
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
(x − a)2 − y2 = 1
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4a (x − b)
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x\]
Find one-parameter families of solution curves of the following differential equation:-
\[x\frac{dy}{dx} + y = x^4\]
Find one-parameter families of solution curves of the following differential equation:-
\[\left( x \log x \right)\frac{dy}{dx} + y = \log x\]
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} - \frac{2xy}{1 + x^2} = x^2 + 2\]
Find one-parameter families of solution curves of the following differential equation:-
\[\left( x + y \right)\frac{dy}{dx} = 1\]
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} \cos^2 x = \tan x - y\]
Find one-parameter families of solution curves of the following differential equation:-
\[e^{- y} \sec^2 y dy = dx + x dy\]
Write the differential equation representing family of curves y = mx, where m is arbitrary constant.
Form the differential equation of the family of ellipses having foci on y-axis and centre at the origin.
Form the differential equation representing the family of curves `y2 = m(a2 - x2) by eliminating the arbitrary constants 'm' and 'a'.
Find the area of the region bounded by the curves (x -1)2 + y2 = 1 and x2 + y2 = 1, using integration.
Form the differential equation representing the family of curves y = A sin x, by eliminating the arbitrary constant A.
Find the differential equation of the family of curves y = Ae2x + B.e–2x.
Find the equation of a curve passing through the point (1, 1) if the perpendicular distance of the origin from the normal at any point P(x, y) of the curve is equal to the distance of P from the x-axis.
The solution of the differential equation `2x * "dy"/"dx" y` = 3 represents a family of ______.
Find the differential equation of system of concentric circles with centre (1, 2).
Find the equation of a curve passing through the point (1, 1). If the tangent drawn at any point P(x, y) on the curve meets the co-ordinate axes at A and B such that P is the mid-point of AB.
Family y = Ax + A3 of curves is represented by the differential equation of degree ______.
The differential equation `y ("d"y)/("d"x) + "c"` represents: ______.
Family y = Ax + A3 of curves will correspond to a differential equation of order ______.
The curve for which the slope of the tangent at any point is equal to the ratio of the abcissa to the ordinate of the point is ______.
Differential equation representing the family of curves y = ex (Acosx + Bsinx) is `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + 2y` = 0
Form the differential equation of family of circles having centre on y-axis and raduis 3 units