मराठी

For the Curve Y = 5x – 2x3, If X Increases at the Rate of 2 Units/Sec, Then Find the Rate of Change of the Slope of the Curve When X = 3 - Mathematics

Advertisements
Advertisements

प्रश्न

For the curve y = 5x – 2x3, if x increases at the rate of 2 units/sec, then find the rate of change of the slope of the curve when x = 3

उत्तर

The given curve is y = 5x – 2x3 and `dx/dt = 2` units/sec

y = 5x – 2x3

Differentiating both sides w.r.t x, we get

Slope of the curve = `dy/dx = 5 - 6x^2`

Differentiating both sides w.r.t t, we get

`=> d/dt (dy/dx) = 0 - 12x dx/dt`

`=> d/dt (dy/dx)_(x = 3) = 0 - 12 xx 3 xx2 = -72 "units/sec"` 

Thus, the slope of the curve is decreasing at the rate of 72 units/sec when x = 3

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2016-2017 (March) Delhi Set 2

संबंधित प्रश्‍न

Form the differential equation of the family of circles having centre on y-axis and radius 3 units.

 

Which of the following differential equation has y = x as one of its particular solution?

A. `(d^2y)/(dx^2) - x^2 (dy)/(dx) + xy = x`

B. `(d^2y)/(dx^2) + x dy/dx + xy = x`

C. `(d^2y)/(dx^2) - x^2 dy/dx + xy = 0`

D. `(d^2y)/(dx^2) + x dy/dx + xy = 0`

 

 

 


Form the differential equation representing the family of curves given by (x – a)2 + 2y2 = a2, where a is an arbitrary constant.


Form the differential equation corresponding to y = emx by eliminating m.


Form the differential equation from the following primitive where constants are arbitrary:
y2 = 4ax


Form the differential equation from the following primitive where constants are arbitrary:
y = ax2 + bx + c


Form the differential equation corresponding to y2 = a (b − x2) by eliminating a and b.


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + (y − b)2 = 1


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = eax


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


For the differential equation xy \[\frac{dy}{dx}\] = (x + 2) (y + 2). Find the solution curve passing through the point (1, −1).


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} - y = \cos 2x\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} + y \cos x = e^{\sin x} \cos x\]


Find one-parameter families of solution curves of the following differential equation:-

\[\left( x + y \right)\frac{dy}{dx} = 1\]


Find one-parameter families of solution curves of the following differential equation:-

\[e^{- y} \sec^2 y dy = dx + x dy\]


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 \log x\]


Form the differential equation of the family of ellipses having foci on y-axis and centre at the origin.


Find the differential equation of the family of curves y = Ae2x + B.e–2x.


Find the differential equation of the family of lines through the origin.


The differential equation representing the family of curves y = A sinx + B cosx is ______.


Form the differential equation of all circles which pass through origin and whose centres lie on y-axis.


Find the equation of a curve passing through origin if the slope of the tangent to the curve at any point (x, y) is equal to the square of the difference of the abcissa and ordinate of the point.


Find the equation of a curve passing through the point (1, 1). If the tangent drawn at any point P(x, y) on the curve meets the co-ordinate axes at A and B such that P is the mid-point of AB.


The differential equation `y ("d"y)/("d"x) + "c"` represents: ______.


The differential equation of the family of curves x2 + y2 – 2ay = 0, where a is arbitrary constant, is ______.


Differential equation representing the family of curves y = ex (Acosx + Bsinx) is `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + 2y` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×