मराठी

The differential equation ddcydydx+c represents: ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The differential equation `y ("d"y)/("d"x) + "c"` represents: ______.

पर्याय

  • Family of hyperbolas

  • Family of parabolas

  • Family of ellipses

  • Family of circles

MCQ
रिकाम्या जागा भरा

उत्तर

The differential equation `y ("d"y)/("d"x) + "c"` represents: Family of circles.

Explanation:

Given differential equation is `y ("d"y)/("d"x) + x` = c

⇒ `y ("d"y)/("d"x)` = c – x

⇒ ydy = (c – x)dx

∴ Integrating both sides, we get

`int y  "d"y = int ("c" - x)  "d"x`

⇒ `y^2/2 = "c"x - x^2/2 + "k"`

⇒ `x^2/2 + y^2/2 - "c"x` = k

⇒ x2 + y2 – 2cx = 2k which is a family of circles.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Equations - Exercise [पृष्ठ १९७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 9 Differential Equations
Exercise | Q 49 | पृष्ठ १९७

संबंधित प्रश्‍न

Form the differential equation of the family of ellipses having foci on y-axis and centre at origin.


Which of the following differential equations has y = c1 ex + c2 e–x as the general solution?

(A) `(d^2y)/(dx^2) + y = 0`

(B) `(d^2y)/(dx^2) - y = 0`

(C) `(d^2y)/(dx^2) + 1 = 0`

(D) `(d^2y)/(dx^2)  - 1 = 0`

 

 


Form the differential equation corresponding to y = emx by eliminating m.


Form the differential equation from the following primitive where constants are arbitrary:
y = cx + 2c2 + c3


Find the differential equation of the family of curves y = Ae2x + Be−2x, where A and B are arbitrary constants.


Form the differential equation corresponding to y2 = a (b − x2) by eliminating a and b.


Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x + a)2 + y2 = a2


Form the differential equation of the family of curves represented by the equation (a being the parameter):
 (x − a)2 + 2y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4ax


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + (y − b)2 = 1


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


For the differential equation xy \[\frac{dy}{dx}\] = (x + 2) (y + 2). Find the solution curve passing through the point (1, −1).


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} + y = x^4\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} + y \cos x = e^{\sin x} \cos x\]


Find one-parameter families of solution curves of the following differential equation:-

\[\left( x + y \right)\frac{dy}{dx} = 1\]


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 \log x\]


Write the differential equation representing family of curves y = mx, where m is arbitrary constant.


Form the differential equation representing the family of curves y = mx, where m is an arbitrary constant.


Find the area of the region bounded by the curves (x -1)2 + y2 = 1 and x2 + y2 = 1, using integration.


Form the differential equation representing the family of curves y = e2x (a + bx), where 'a' and 'b' are arbitrary constants.


Find the equation of a curve whose tangent at any point on it, different from origin, has slope `y + y/x`.


The differential equation representing the family of curves y = A sinx + B cosx is ______.


Find the equation of a curve passing through (2, 1) if the slope of the tangent to the curve at any point (x, y) is `(x^2 + y^2)/(2xy)`.


Find the equation of the curve through the point (1, 0) if the slope of the tangent to the curve at any point (x, y) is `(y - 1)/(x^2 + x)`


Find the equation of a curve passing through origin if the slope of the tangent to the curve at any point (x, y) is equal to the square of the difference of the abcissa and ordinate of the point.


The differential equation of the family of curves y2 = 4a(x + a) is ______.


From the differential equation of the family of circles touching the y-axis at origin


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×