हिंदी

The differential equation ddcydydx+c represents: ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The differential equation `y ("d"y)/("d"x) + "c"` represents: ______.

विकल्प

  • Family of hyperbolas

  • Family of parabolas

  • Family of ellipses

  • Family of circles

MCQ
रिक्त स्थान भरें

उत्तर

The differential equation `y ("d"y)/("d"x) + "c"` represents: Family of circles.

Explanation:

Given differential equation is `y ("d"y)/("d"x) + x` = c

⇒ `y ("d"y)/("d"x)` = c – x

⇒ ydy = (c – x)dx

∴ Integrating both sides, we get

`int y  "d"y = int ("c" - x)  "d"x`

⇒ `y^2/2 = "c"x - x^2/2 + "k"`

⇒ `x^2/2 + y^2/2 - "c"x` = k

⇒ x2 + y2 – 2cx = 2k which is a family of circles.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Exercise [पृष्ठ १९७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 9 Differential Equations
Exercise | Q 49 | पृष्ठ १९७

संबंधित प्रश्न

Form the differential equation of the family of circles having centre on y-axis and radius 3 units.

 

Form the differential equation representing the family of curves given by (x – a)2 + 2y2 = a2, where a is an arbitrary constant.


For the curve y = 5x – 2x3, if x increases at the rate of 2 units/sec, then find the rate of change of the slope of the curve when x = 3


Find the differential equation of the family of curves y = Ae2x + Be−2x, where A and B are arbitrary constants.


Form the differential equation corresponding to y2 = a (b − x2) by eliminating a and b.


Form the differential equation corresponding to (x − a)2 + (y − b)2 = r2 by eliminating a and b.


Form the differential equation of the family of curves represented by the equation (a being the parameter):
 (x − a)2 + 2y2 = a2


For the differential equation xy \[\frac{dy}{dx}\] = (x + 2) (y + 2). Find the solution curve passing through the point (1, −1).


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} - y = \cos 2x\]


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x}\]


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} + y = x^4\]


The family of curves in which the sub tangent at any point of a curve is double the abscissae, is given by


Form the differential equation representing the family of curves y = mx, where m is an arbitrary constant.


Form the differential equation of the family of ellipses having foci on y-axis and centre at the origin.


Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Form the differential equation representing the family of curves `y2 = m(a2 - x2) by eliminating the arbitrary constants 'm' and 'a'. 


Find the area of the region bounded by the curves (x -1)2 + y2 = 1 and x2 + y2 = 1, using integration.


Form the differential equation representing the family of curves y = e2x (a + bx), where 'a' and 'b' are arbitrary constants.


Form the differential equation representing the family of curves y = A sin x, by eliminating the arbitrary constant A.


Form the differential equation of all circles which pass through origin and whose centres lie on y-axis.


Find the equation of a curve passing through origin and satisfying the differential equation `(1 + x^2) "dy"/"dx" + 2xy` = 4x2 


Form the differential equation by eliminating A and B in Ax2 + By2 = 1


Find the equation of a curve passing through (2, 1) if the slope of the tangent to the curve at any point (x, y) is `(x^2 + y^2)/(2xy)`.


Find the equation of a curve passing through the point (1, 1). If the tangent drawn at any point P(x, y) on the curve meets the co-ordinate axes at A and B such that P is the mid-point of AB.


The differential equation representing the family of circles x2 + (y – a)2 = a2 will be of order two.


Form the differential equation of family of circles having centre on y-axis and raduis 3 units


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×