हिंदी

Find the equation of a curve passing through the point (1, 1). If the tangent drawn at any point P(x, y) on the curve meets the co-ordinate axes at A and B such that P is the mid-point of AB. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of a curve passing through the point (1, 1). If the tangent drawn at any point P(x, y) on the curve meets the co-ordinate axes at A and B such that P is the mid-point of AB.

योग

उत्तर


Let P (x, y) be any point on the curve and AB be the tangent to the given curve at P.

P is the midpoint of AB  .....(Given)

∴ Coordinates of A and B are (2x, 0) and (0, 2y) respectively.

∴ Slope of the tangent AB = `(2y - 0)/(0 - 2x) = - y/x`

∴ `("d"y)/("d"x) = - y/x`

⇒ `("d"y)/y = -("d"x)/x`

Integrating both sides, we get

`int ("d"y)/y = -int ("d"x)/x`

⇒ log y = – log x + log c

⇒ log y + log x = log c

⇒ log yx = log c

∴ yx = c

Since, the curve passes through (1, 1)

∴ 1 × 1 = c

∴ c = 1

Hence, the required equation is xy = 1.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Exercise [पृष्ठ १९५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 9 Differential Equations
Exercise | Q 32 | पृष्ठ १९५

संबंधित प्रश्न

Form the differential equation of the family of circles touching the y-axis at the origin.


Form the differential equation of the family of ellipses having foci on y-axis and centre at origin.


Form the differential equation of the family of hyperbolas having foci on x-axis and centre at origin.


Form the differential equation of the family of circles having centre on y-axis and radius 3 units.

 

Which of the following differential equation has y = x as one of its particular solution?

A. `(d^2y)/(dx^2) - x^2 (dy)/(dx) + xy = x`

B. `(d^2y)/(dx^2) + x dy/dx + xy = x`

C. `(d^2y)/(dx^2) - x^2 dy/dx + xy = 0`

D. `(d^2y)/(dx^2) + x dy/dx + xy = 0`

 

 

 


Form the differential equation from the following primitive where constants are arbitrary:
y2 = 4ax


Find the differential equation of the family of curves y = Ae2x + Be−2x, where A and B are arbitrary constants.


Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x − a)2 − y2 = a2


Form the differential equation of the family of curves represented by the equation (a being the parameter):
 (x − a)2 + 2y2 = a2


Show that y = bex + ce2x is a solution of the differential equation, \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} - y = \cos 2x\]


Find one-parameter families of solution curves of the following differential equation:-

\[\left( x + y \right)\frac{dy}{dx} = 1\]


Find one-parameter families of solution curves of the following differential equation:-

\[x \log x\frac{dy}{dx} + y = 2 \log x\]


Write the differential equation representing family of curves y = mx, where m is arbitrary constant.


Write the order of the differential equation representing the family of curves y = ax + a3.


The differential equation which represents the family of curves y = eCx is


The family of curves in which the sub tangent at any point of a curve is double the abscissae, is given by


Form the differential equation of the family of ellipses having foci on y-axis and centre at the origin.


Form the differential equation representing the family of curves `y2 = m(a2 - x2) by eliminating the arbitrary constants 'm' and 'a'. 


Find the area of the region bounded by the curves (x -1)2 + y2 = 1 and x2 + y2 = 1, using integration.


Find the equation of a curve whose tangent at any point on it, different from origin, has slope `y + y/x`.


The differential equation representing the family of curves y = A sinx + B cosx is ______.


Family y = Ax + A3 of curves is represented by the differential equation of degree ______.


The curve for which the slope of the tangent at any point is equal to the ratio of the abcissa to the ordinate of the point is ______.


The differential equation of the family of curves y2 = 4a(x + a) is ______.


Differential equation representing the family of curves y = ex (Acosx + Bsinx) is `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + 2y` = 0


Find the equation of the curve at every point of which the tangent line has a slope of 2x:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×