हिंदी

Form the Differential Equation of the Family of Ellipses Having Foci on Y-axis and Centre at Origin. - Mathematics

Advertisements
Advertisements

प्रश्न

Form the differential equation of the family of ellipses having foci on y-axis and centre at origin.

उत्तर

The equation of the family of ellipses having foci on the y-axis and the centre at origin is as follows:

This is the required differential equation.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Exercise 9.3 [पृष्ठ ३९१]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 9 Differential Equations
Exercise 9.3 | Q 8 | पृष्ठ ३९१

संबंधित प्रश्न

Form the differential equation of the family of circles having centre on y-axis and radius 3 units.

 

For the curve y = 5x – 2x3, if x increases at the rate of 2 units/sec, then find the rate of change of the slope of the curve when x = 3


Show that the family of curves for which `dy/dx = (x^2+y^2)/(2x^2)` is given by  x2 - y2 = cx


Form the differential equation corresponding to y = emx by eliminating m.


Form the differential equation from the following primitive where constants are arbitrary:
y2 = 4ax


Form the differential equation from the following primitive where constants are arbitrary:
y = ax2 + bx + c


Find the differential equation of the family of curves y = Ae2x + Be−2x, where A and B are arbitrary constants.


Form the differential equation corresponding to (x − a)2 + (y − b)2 = r2 by eliminating a and b.


Form the differential equation of the family of curves represented by the equation (a being the parameter):
 (x − a)2 + 2y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 − y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4ax


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):

\[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\]

 


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4a (x − b)

 


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = eax


For the differential equation xy \[\frac{dy}{dx}\] = (x + 2) (y + 2). Find the solution curve passing through the point (1, −1).


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} \cos^2 x = \tan x - y\]


Find one-parameter families of solution curves of the following differential equation:-

\[e^{- y} \sec^2 y dy = dx + x dy\]


Write the differential equation representing family of curves y = mx, where m is arbitrary constant.


The differential equation which represents the family of curves y = eCx is


Form the differential equation representing the family of curves y = mx, where m is an arbitrary constant.


Find the area of the region bounded by the curves (x -1)2 + y2 = 1 and x2 + y2 = 1, using integration.


Form the differential equation representing the family of curves y = e2x (a + bx), where 'a' and 'b' are arbitrary constants.


Form the differential equation representing the family of curves y = A sin x, by eliminating the arbitrary constant A.


Find the differential equation of the family of curves y = Ae2x + B.e–2x.


Find the differential equation of the family of lines through the origin.


The differential equation representing the family of curves y = A sinx + B cosx is ______.


Find the differential equation of system of concentric circles with centre (1, 2).


Find the equation of a curve passing through (2, 1) if the slope of the tangent to the curve at any point (x, y) is `(x^2 + y^2)/(2xy)`.


Find the equation of the curve through the point (1, 0) if the slope of the tangent to the curve at any point (x, y) is `(y - 1)/(x^2 + x)`


The differential equation `y ("d"y)/("d"x) + "c"` represents: ______.


The differential equation of the family of curves x2 + y2 – 2ay = 0, where a is arbitrary constant, is ______.


Family y = Ax + A3 of curves will correspond to a differential equation of order ______.


The curve for which the slope of the tangent at any point is equal to the ratio of the abcissa to the ordinate of the point is ______.


Find the equation of the curve at every point of which the tangent line has a slope of 2x:


The area above the x-axis and under the curve `y = sqrt(1/x - 1)` for `1/2 ≤ x ≤ 1` is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×