हिंदी

Represent the Following Families of Curves by Forming the Corresponding Differential Equations (A, B Being Parameters): X2 − Y2 = A2 - Mathematics

Advertisements
Advertisements

प्रश्न

Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 − y2 = a2

योग

उत्तर

The equation of family of curves is \[x^2 - y^2 = a^2..........(1)\]
where `a` is a parameter.
As this equation has only one arbitrary constant, we shall get a differential equation of first order.
Differentiating (1) with respect to x, we get
\[2x - 2y\frac{dy}{dx} = 0\]
\[ \Rightarrow x - y\frac{dy}{dx} = 0\]
It is the required differential equation.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.02 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.02 | Q 16.02 | पृष्ठ १७

संबंधित प्रश्न

Form the differential equation of the family of circles touching the y-axis at the origin.


Form the differential equation of the family of ellipses having foci on y-axis and centre at origin.


Form the differential equation of the family of circles having centre on y-axis and radius 3 units.

 

Form the differential equation corresponding to y = emx by eliminating m.


Form the differential equation from the following primitive where constants are arbitrary:
y = ax2 + bx + c


Find the differential equation of the family of curves, x = A cos nt + B sin nt, where A and B are arbitrary constants.


Form the differential equation corresponding to y2 = a (b − x2) by eliminating a and b.


Form the differential equation corresponding to y2 − 2ay + x2 = a2 by eliminating a.


Form the differential equation corresponding to (x − a)2 + (y − b)2 = r2 by eliminating a and b.


Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x − a)2 − y2 = a2


Form the differential equation of the family of curves represented by the equation (a being the parameter):
 (x − a)2 + 2y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4a (x − b)

 


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = eax


Show that y = bex + ce2x is a solution of the differential equation, \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0\]


For the differential equation xy \[\frac{dy}{dx}\] = (x + 2) (y + 2). Find the solution curve passing through the point (1, −1).


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} - y = \cos 2x\]


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x}\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} + y \cos x = e^{\sin x} \cos x\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} \cos^2 x = \tan x - y\]


Write the differential equation representing family of curves y = mx, where m is arbitrary constant.


The differential equation which represents the family of curves y = eCx is


Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Form the differential equation representing the family of curves y = A sin x, by eliminating the arbitrary constant A.


Form the differential equation of all circles which pass through origin and whose centres lie on y-axis.


Find the equation of a curve passing through origin and satisfying the differential equation `(1 + x^2) "dy"/"dx" + 2xy` = 4x2 


Form the differential equation by eliminating A and B in Ax2 + By2 = 1


Find the equation of a curve passing through the point (1, 1). If the tangent drawn at any point P(x, y) on the curve meets the co-ordinate axes at A and B such that P is the mid-point of AB.


Family y = Ax + A3 of curves is represented by the differential equation of degree ______.


Family y = Ax + A3 of curves will correspond to a differential equation of order ______.


Differential equation representing the family of curves y = ex (Acosx + Bsinx) is `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + 2y` = 0


Find the equation of the curve at every point of which the tangent line has a slope of 2x:


From the differential equation of the family of circles touching the y-axis at origin


Form the differential equation of the family of hyperbola having foci on x-axis and centre at origin.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×