हिंदी

Find One-parameter Families of Solution Curves of the Following Differential Equation:- D Y D X Cos 2 X = Tan X − Y - Mathematics

Advertisements
Advertisements

प्रश्न

Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} \cos^2 x = \tan x - y\]

Solve the following differential equation:-

\[\frac{dy}{dx} \cos^2 x = \tan x - y\]

योग

उत्तर

We have,
\[\frac{dy}{dx} \cos^2 x = \tan x - y\]
\[ \Rightarrow \frac{dy}{dx} + \frac{1}{\cos^2 x}y = \tan x \sec^2 x\]
\[ \Rightarrow \frac{dy}{dx} + y \sec^2 x = \tan x \sec^2 x . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dy}{dx} + Py = Q\]
where
\[P = \sec^2 x\]
\[Q = \tan x \sec^2 x\]
\[ \therefore I.F. = e^{\int P\ dx} \]
\[ = e^{\int \sec^2 x\ dx} \]
\[ = e^{\tan x} \]
\[\text{Multiplying both sides of }\left( 1 \right)\text{ by }e^{\tan x} ,\text{ we get }\]
\[ e^{\tan x} \left( \frac{dy}{dx} + y \sec^2 x \right) = e^{\tan x} \tan x \sec^2 x\]
\[ \Rightarrow e^{\tan x} \frac{dy}{dx} + y e^{\tan x} \sec^2 x = e^{\tan x} \tan x \sec^2 x\]
Integrating both sides with respect to x, we get
\[ e^{\tan x} y = \int e^{\tan x} \tan x \sec^2 x dx + C\]
\[ \Rightarrow e^{\tan x} y = I + C . . . . . . . . . . . \left( 2 \right)\]
Where,
\[I = \int e^{\tan x} \tan x \sec^2 x dx\]
\[\text{Putting }t = \tan x,\text{ we get }\]
\[dt = \sec^2 x dx\]

\[ = t\int e^t dt - \int\left[ \frac{d}{dt}\left( t \right)\int e^t dt \right]dt\]
\[ = t e^t - e^t \]
\[ = \left( t - 1 \right) e^t \]
\[ = \left( \tan x - 1 \right) e^{\tan x} \]
\[\text{ Putting the value of I in }\left( 2 \right),\text{ we get }\]
\[ e^{\tan x} y = \left( \tan x - 1 \right) e^{\tan x} + C\]
\[ \Rightarrow y = \left( \tan x - 1 \right) + C e^{- \tan x} \]
\[\text{ Hence, }y = \left( \tan x - 1 \right) + C e^{- \tan x} \text{ is the required solution.}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.10 [पृष्ठ १०७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.10 | Q 36.09 | पृष्ठ १०७

संबंधित प्रश्न

Form the differential equation of the family of circles touching the y-axis at the origin.


Form the differential equation of the family of circles having centre on y-axis and radius 3 units.

 

Form the differential equation of the family of circles in the first quadrant which touch the coordinate axes.


For the curve y = 5x – 2x3, if x increases at the rate of 2 units/sec, then find the rate of change of the slope of the curve when x = 3


Form the differential equation of the family of curves represented by y2 = (x − c)3.


Form the differential equation from the following primitive where constants are arbitrary:
y2 = 4ax


Form the differential equation from the following primitive where constants are arbitrary:
xy = a2


Find the differential equation of the family of curves, x = A cos nt + B sin nt, where A and B are arbitrary constants.


Form the differential equation of the family of curves represented by the equation (a being the parameter):
 (x − a)2 + 2y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4ax


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + (y − b)2 = 1


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
(x − a)2 − y2 = 1


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4a (x − b)

 


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = eax


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} - y = \cos 2x\]


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} + y = x^4\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} - \frac{2xy}{1 + x^2} = x^2 + 2\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} + y \cos x = e^{\sin x} \cos x\]


Find one-parameter families of solution curves of the following differential equation:-

\[e^{- y} \sec^2 y dy = dx + x dy\]


Find one-parameter families of solution curves of the following differential equation:-

\[x \log x\frac{dy}{dx} + y = 2 \log x\]


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 \log x\]


Write the order of the differential equation representing the family of curves y = ax + a3.


The differential equation which represents the family of curves y = eCx is


The family of curves in which the sub tangent at any point of a curve is double the abscissae, is given by


Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Find the differential equation of the family of lines through the origin.


Find the equation of a curve passing through the point (1, 1) if the perpendicular distance of the origin from the normal at any point P(x, y) of the curve is equal to the distance of P from the x-axis.


Find the equation of a curve passing through origin and satisfying the differential equation `(1 + x^2) "dy"/"dx" + 2xy` = 4x2 


Find the differential equation of system of concentric circles with centre (1, 2).


Family y = Ax + A3 of curves is represented by the differential equation of degree ______.


The differential equation `y ("d"y)/("d"x) + "c"` represents: ______.


The differential equation of the family of curves x2 + y2 – 2ay = 0, where a is arbitrary constant, is ______.


Differential equation representing the family of curves y = ex (Acosx + Bsinx) is `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + 2y` = 0


Form the differential equation of the family of hyperbola having foci on x-axis and centre at origin.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×