हिंदी

Find One-parameter Families of Solution Curves of the Following Differential Equation:- D Y D X − 2 X Y 1 + X 2 = X 2 + 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} - \frac{2xy}{1 + x^2} = x^2 + 2\]

Solve the following differential equation:-

\[\frac{dy}{dx} - \frac{2xy}{1 + x^2} = x^2 + 2\]

योग

उत्तर

We have, 
\[\frac{dy}{dx} - \frac{2xy}{1 + x^2} = x^2 + 2 . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form 
\[\frac{dy}{dx} + Py = Q\]
where
\[P = - \frac{2x}{1 + x^2} \]
\[Q = x^2 + 2\]
\[ \therefore I.F. = e^{\int P\ dx} \]
\[ = e^{- \int\frac{2x}{1 + x^2} dx} \]
\[ = e^{- \log\left| 1 + x^2 \right|} \]
\[ = \frac{1}{1 + x^2}\]
\[\text{ Multiplying both sides of }\left( 1 \right) \text{ by }\frac{1}{1 + x^2},\text{ we get }\]
\[\frac{1}{1 + x^2} \left( \frac{dy}{dx} - \frac{2xy}{1 + x^2} \right) = \frac{1}{1 + x^2}\left( x^2 + 2 \right)\]
\[ \Rightarrow \frac{1}{1 + x^2}\frac{dy}{dx} - \frac{2xy}{\left( 1 + x^2 \right)^2} = \frac{x^2 + 2}{x^2 + 1}\]
Integrating both sides with respect to x, we get
\[\frac{1}{1 + x^2}y = \int\frac{x^2 + 2}{x^2 + 1} dx + C\]
\[ \Rightarrow \frac{1}{1 + x^2}y = \int\frac{x^2 + 1 + 1}{x^2 + 1} dx + C\]
\[ \Rightarrow \frac{1}{1 + x^2}y = \int dx + \int\frac{1}{x^2 + 1} dx + C\]
\[ \Rightarrow \frac{1}{1 + x^2}y = x + \tan^{- 1} x + C\]
\[ \Rightarrow y = \left( 1 + x^2 \right)\left( x + \tan^{- 1} x + C \right)\]
\[\text{ Hence, }y = \left( 1 + x^2 \right)\left( x + \tan^{- 1} x + C \right)\text{ is the required solution.}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.10 [पृष्ठ १०७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.10 | Q 36.06 | पृष्ठ १०७

संबंधित प्रश्न

Form the differential equation of the family of ellipses having foci on y-axis and centre at origin.


Form the differential equation of the family of hyperbolas having foci on x-axis and centre at origin.


Form the differential equation of the family of circles having centre on y-axis and radius 3 units.

 

Form the differential equation representing the family of curves given by (x – a)2 + 2y2 = a2, where a is an arbitrary constant.


Form the differential equation of the family of circles in the first quadrant which touch the coordinate axes.


Show that the family of curves for which `dy/dx = (x^2+y^2)/(2x^2)` is given by  x2 - y2 = cx


Form the differential equation from the following primitive where constants are arbitrary:
xy = a2


Find the differential equation of the family of curves y = Ae2x + Be−2x, where A and B are arbitrary constants.


Form the differential equation corresponding to (x − a)2 + (y − b)2 = r2 by eliminating a and b.


Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x + a)2 + y2 = a2


Form the differential equation of the family of curves represented by the equation (a being the parameter):
 (x − a)2 + 2y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4ax


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + (y − b)2 = 1


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
(x − a)2 − y2 = 1


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4a (x − b)

 


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = ax3


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = ax3


Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} + y \cos x = e^{\sin x} \cos x\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} \cos^2 x = \tan x - y\]


Find one-parameter families of solution curves of the following differential equation:-

\[e^{- y} \sec^2 y dy = dx + x dy\]


Find one-parameter families of solution curves of the following differential equation:-

\[x \log x\frac{dy}{dx} + y = 2 \log x\]


The family of curves in which the sub tangent at any point of a curve is double the abscissae, is given by


Form the differential equation representing the family of curves y = mx, where m is an arbitrary constant.


Find the equation of a curve whose tangent at any point on it, different from origin, has slope `y + y/x`.


Find the equation of a curve passing through the point (1, 1) if the perpendicular distance of the origin from the normal at any point P(x, y) of the curve is equal to the distance of P from the x-axis.


The differential equation representing the family of curves y = A sinx + B cosx is ______.


Find the differential equation of system of concentric circles with centre (1, 2).


Find the equation of a curve passing through origin if the slope of the tangent to the curve at any point (x, y) is equal to the square of the difference of the abcissa and ordinate of the point.


The differential equation `y ("d"y)/("d"x) + "c"` represents: ______.


The differential equation of the family of curves x2 + y2 – 2ay = 0, where a is arbitrary constant, is ______.


Family y = Ax + A3 of curves will correspond to a differential equation of order ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×