हिंदी

Represent the Following Families of Curves by Forming the Corresponding Differential Equations (A, B Being Parameters): (X − A)2 − Y2 = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
(x − a)2 − y2 = 1

योग

उत्तर

The equation of family of curves is \[\left( x - a \right)^2 - y^2 = 1.........(1)\]

where a is a parameter.

As this equation has only one arbitrary constant, we shall get a differential equation of first order.

Differentiating (1) with respect to x, we get

\[2\left( x - a \right) - 2y\frac{dy}{dx} = 0\]

\[ \Rightarrow \left( x - a \right) - y\frac{dy}{dx} = 0\]

\[ \Rightarrow \sqrt{1 + y^2} = y\frac{dy}{dx} ........\left[\text{Using}\left( 1 \right) \right]\]

\[ \Rightarrow 1 + y^2 = y^2 \left( \frac{dy}{dx} \right)^2 \]

\[ \Rightarrow y^2 \left( \frac{dy}{dx} \right)^2 - y^2 = 1\]

It is the required differential equation.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.02 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.02 | Q 16.05 | पृष्ठ १७

संबंधित प्रश्न

Form the differential equation of the family of circles touching the y-axis at the origin.


Form the differential equation of the family of ellipses having foci on y-axis and centre at origin.


Form the differential equation representing the family of curves given by (x – a)2 + 2y2 = a2, where a is an arbitrary constant.


Form the differential equation corresponding to y = emx by eliminating m.


Form the differential equation from the following primitive where constants are arbitrary:
y2 = 4ax


Form the differential equation from the following primitive where constants are arbitrary:
y = cx + 2c2 + c3


Find the differential equation of the family of curves, x = A cos nt + B sin nt, where A and B are arbitrary constants.


Form the differential equation corresponding to y2 = a (b − x2) by eliminating a and b.


Form the differential equation of the family of curves represented by the equation (a being the parameter):
 (x − a)2 + 2y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 − y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + (y − b)2 = 1


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x}\]


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} + y = x^4\]


Find one-parameter families of solution curves of the following differential equation:-

\[\left( x \log x \right)\frac{dy}{dx} + y = \log x\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} \cos^2 x = \tan x - y\]


Find one-parameter families of solution curves of the following differential equation:-

\[e^{- y} \sec^2 y dy = dx + x dy\]


Form the differential equation of the family of ellipses having foci on y-axis and centre at the origin.


Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Form the differential equation representing the family of curves `y2 = m(a2 - x2) by eliminating the arbitrary constants 'm' and 'a'. 


Find the differential equation of the family of curves y = Ae2x + B.e–2x.


The solution of the differential equation `2x * "dy"/"dx" y` = 3 represents a family of ______.


Form the differential equation of all circles which pass through origin and whose centres lie on y-axis.


Form the differential equation by eliminating A and B in Ax2 + By2 = 1


Find the equation of the curve through the point (1, 0) if the slope of the tangent to the curve at any point (x, y) is `(y - 1)/(x^2 + x)`


Find the equation of a curve passing through the point (1, 1). If the tangent drawn at any point P(x, y) on the curve meets the co-ordinate axes at A and B such that P is the mid-point of AB.


The differential equation of the family of curves x2 + y2 – 2ay = 0, where a is arbitrary constant, is ______.


The differential equation of the family of curves y2 = 4a(x + a) is ______.


Find the equation of the curve at every point of which the tangent line has a slope of 2x:


From the differential equation of the family of circles touching the y-axis at origin


Form the differential equation of family of circles having centre on y-axis and raduis 3 units


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×