हिंदी

The solution of the differential equation dydx2x⋅dydxy = 3 represents a family of ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The solution of the differential equation `2x * "dy"/"dx" y` = 3 represents a family of ______.

विकल्प

  • Straight lines

  • Circles

  • Parabolas

  • Ellipses

MCQ
रिक्त स्थान भरें

उत्तर

The solution of the differential equation `2x * "dy"/"dx" y` = 3 represents a family of parabolas.

Explanation:

Given equation can be written as `(2"d"y)/(y + 3) = "dx"/x`

⇒ 2log (y + 3) = logx + logc

⇒ (y + 3)2 = cx which represents the family of parabolas.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Solved Examples [पृष्ठ १८७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 9 Differential Equations
Solved Examples | Q 16 | पृष्ठ १८७

संबंधित प्रश्न

Form the differential equation of the family of hyperbolas having foci on x-axis and centre at origin.


Form the differential equation of the family of circles having centre on y-axis and radius 3 units.

 

Which of the following differential equations has y = c1 ex + c2 e–x as the general solution?

(A) `(d^2y)/(dx^2) + y = 0`

(B) `(d^2y)/(dx^2) - y = 0`

(C) `(d^2y)/(dx^2) + 1 = 0`

(D) `(d^2y)/(dx^2)  - 1 = 0`

 

 


Which of the following differential equation has y = x as one of its particular solution?

A. `(d^2y)/(dx^2) - x^2 (dy)/(dx) + xy = x`

B. `(d^2y)/(dx^2) + x dy/dx + xy = x`

C. `(d^2y)/(dx^2) - x^2 dy/dx + xy = 0`

D. `(d^2y)/(dx^2) + x dy/dx + xy = 0`

 

 

 


For the curve y = 5x – 2x3, if x increases at the rate of 2 units/sec, then find the rate of change of the slope of the curve when x = 3


Form the differential equation from the following primitive where constants are arbitrary:
y2 = 4ax


Form the differential equation from the following primitive where constants are arbitrary:
y = cx + 2c2 + c3


Form the differential equation from the following primitive where constants are arbitrary:
xy = a2


Form the differential equation from the following primitive where constants are arbitrary:
y = ax2 + bx + c


Find the differential equation of the family of curves y = Ae2x + Be−2x, where A and B are arbitrary constants.


Find the differential equation of the family of curves, x = A cos nt + B sin nt, where A and B are arbitrary constants.


Form the differential equation corresponding to y2 = a (b − x2) by eliminating a and b.


Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x + a)2 + y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = ax3


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = ax3


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} + 3y = e^{mx}\], m is a given real number.


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} - y = \cos 2x\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} - \frac{2xy}{1 + x^2} = x^2 + 2\]


Find one-parameter families of solution curves of the following differential equation:-

\[e^{- y} \sec^2 y dy = dx + x dy\]


Write the differential equation representing family of curves y = mx, where m is arbitrary constant.


Write the order of the differential equation representing the family of curves y = ax + a3.


The differential equation which represents the family of curves y = eCx is


Find the equation of a curve whose tangent at any point on it, different from origin, has slope `y + y/x`.


Find the equation of a curve passing through the point (1, 1) if the perpendicular distance of the origin from the normal at any point P(x, y) of the curve is equal to the distance of P from the x-axis.


Form the differential equation by eliminating A and B in Ax2 + By2 = 1


Find the differential equation of system of concentric circles with centre (1, 2).


Find the equation of a curve passing through (2, 1) if the slope of the tangent to the curve at any point (x, y) is `(x^2 + y^2)/(2xy)`.


Family y = Ax + A3 of curves will correspond to a differential equation of order ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×