Advertisements
Advertisements
प्रश्न
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} + 3y = e^{mx}\], m is a given real number.
Solve the following differential equation:-
\[\frac{dy}{dx} + 3y = e^{mx}\], m is a given real number.
उत्तर
We have,
\[\frac{dy}{dx} + 3y = e^{mx} . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dy}{dx} + Py = Q\]
where
\[P = 3 \]
\[Q = e^{mx} \]
\[ \therefore I.F. = e^{\int P\ dx} \]
\[ = e^{\int3 dx} \]
\[ = e^{3x} \]
\[\text{ Multiplying both sides of }(1)\text{ by }e^{3x} ,\text{ we get }\]
\[ e^{3x} \left( \frac{dy}{dx} + 3y \right) = e^{3x} e^{mx} \]
\[ \Rightarrow e^{3x} \frac{dy}{dx} + 3 e^{3x} y = e^\left( m + 3 \right)x \]
Integrating both sides with respect to x, we get
\[y e^{3x} = \int e^\left( m + 3 \right)x dx + C .............\left(\text{when }m + 3 \neq 0 \right) \]
\[ \Rightarrow y e^{3x} = \frac{e^\left( m + 3 \right)x}{m + 3} + C\]
\[ \Rightarrow y = \frac{e^{mx}}{m + 3} + C e^{- 3x} \]
\[y e^{3x} = \int e^{0 \times x} dx + C ...........\left(\text{when }m + 3 = 0 \right) \]
\[ \Rightarrow y e^{3x} = \int dx + C\]
\[ \Rightarrow y e^{3x} = x + C\]
\[ \Rightarrow y = \left( x + C \right) e^{- 3x} \]
Hence,
\[ y = \frac{e^{mx}}{m + 3} + C e^{- 3x} ,\text{ where }m + 3 \neq 0\]
and
\[y = \left( x + C \right) e^{- 3x} ,\text{ where }m + 3 = 0 \text{ are required solutions.}\]
APPEARS IN
संबंधित प्रश्न
Form the differential equation of the family of circles touching the y-axis at the origin.
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
Form the differential equation of the family of ellipses having foci on y-axis and centre at origin.
Which of the following differential equation has y = x as one of its particular solution?
A. `(d^2y)/(dx^2) - x^2 (dy)/(dx) + xy = x`
B. `(d^2y)/(dx^2) + x dy/dx + xy = x`
C. `(d^2y)/(dx^2) - x^2 dy/dx + xy = 0`
D. `(d^2y)/(dx^2) + x dy/dx + xy = 0`
Form the differential equation representing the family of curves given by (x – a)2 + 2y2 = a2, where a is an arbitrary constant.
Form the differential equation corresponding to y = emx by eliminating m.
Find the differential equation of the family of curves y = Ae2x + Be−2x, where A and B are arbitrary constants.
Find the differential equation of the family of curves, x = A cos nt + B sin nt, where A and B are arbitrary constants.
Form the differential equation corresponding to y2 = a (b − x2) by eliminating a and b.
Form the differential equation corresponding to (x − a)2 + (y − b)2 = r2 by eliminating a and b.
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + (y − b)2 = 1
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
(x − a)2 − y2 = 1
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = eax
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x\]
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} - y = \cos 2x\]
Find one-parameter families of solution curves of the following differential equation:-
\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x}\]
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} - \frac{2xy}{1 + x^2} = x^2 + 2\]
Find one-parameter families of solution curves of the following differential equation:-
\[e^{- y} \sec^2 y dy = dx + x dy\]
The differential equation which represents the family of curves y = eCx is
The family of curves in which the sub tangent at any point of a curve is double the abscissae, is given by
Form the differential equation representing the family of curves y = mx, where m is an arbitrary constant.
Form the differential equation of the family of ellipses having foci on y-axis and centre at the origin.
Form the differential equation representing the family of curves `y2 = m(a2 - x2) by eliminating the arbitrary constants 'm' and 'a'.
Form the differential equation by eliminating A and B in Ax2 + By2 = 1
Find the equation of a curve passing through (2, 1) if the slope of the tangent to the curve at any point (x, y) is `(x^2 + y^2)/(2xy)`.
Find the equation of the curve through the point (1, 0) if the slope of the tangent to the curve at any point (x, y) is `(y - 1)/(x^2 + x)`
Find the equation of a curve passing through the point (1, 1). If the tangent drawn at any point P(x, y) on the curve meets the co-ordinate axes at A and B such that P is the mid-point of AB.
Family y = Ax + A3 of curves will correspond to a differential equation of order ______.
The differential equation of the family of curves y2 = 4a(x + a) is ______.
Differential equation representing the family of curves y = ex (Acosx + Bsinx) is `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + 2y` = 0
Find the equation of the curve at every point of which the tangent line has a slope of 2x: