Advertisements
Advertisements
प्रश्न
Solve the differential equation \[\left( x + 2 y^2 \right)\frac{dy}{dx} = y\], given that when x = 2, y = 1.
उत्तर
We have,
\[\left( x + 2 y^2 \right)\frac{dy}{dx} = y\]
\[ \Rightarrow \frac{dx}{dy} = \frac{1}{y}\left( x + 2 y^2 \right) \]
\[ \Rightarrow \frac{dx}{dy} - \frac{1}{y}x = 2y . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dx}{dy} + Px = Q\]
where
\[P = - \frac{1}{y}\]
\[Q = 2y\]
\[ \therefore I . F . = e^{ \int P dy } \]
\[ = e^{- \int\frac{1}{y}dy} \]
\[ = e^{- \log y} = \frac{1}{y}\]
\[\text{ Multiplying both sides of }\left( 1 \right)\text{ by }\frac{1}{y},\text{ we get }\]
\[\frac{1}{y}\left( \frac{dx}{dy} - \frac{1}{y}x \right) = \frac{1}{y} \times 2y\]
\[ \Rightarrow \frac{1}{y}\frac{dx}{dy} - \frac{1}{y^2}x = 2\]
Integrating both sides with respect to y, we get
\[x\frac{1}{y} = \int 2dy + C\]
\[ \Rightarrow x\frac{1}{y} = 2y + C\]
\[ \Rightarrow x = 2 y^2 + Cy . . . . . \left( 2 \right)\]
Now,
\[y = 1\text{ at }x = 2\]
\[ \therefore 2 = 2 + C\]
\[ \Rightarrow C = 0\]
\[\text{ Putting the value of C in }\left( 2 \right),\text{ we get }\]
\[x = 2 y^2 \]
\[\text{ Hence, }x = 2 y^2\text{ is the required solution .}\]
APPEARS IN
संबंधित प्रश्न
Find the the differential equation for all the straight lines, which are at a unit distance from the origin.
For the differential equation, find the general solution:
`dy/dx + (sec x) y = tan x (0 <= x < pi/2)`
For the differential equation, find the general solution:
`x log x dy/dx + y= 2/x log x`
For the differential equation given, find a particular solution satisfying the given condition:
`(1 + x^2)dy/dx + 2xy = 1/(1 + x^2); y = 0` when x = 1
For the differential equation given, find a particular solution satisfying the given condition:
`dy/dx - 3ycotx = sin 2x; y = 2` when `x = pi/2`
Find the equation of the curve passing through the origin given that the slope of the tangent to the curve at any point (x, y) is equal to the sum of the coordinates of the point.
The Integrating Factor of the differential equation `dy/dx - y = 2x^2` is ______.
The integrating factor of the differential equation.
`(1 - y^2) dx/dy + yx = ay(-1 < y < 1)` is ______.
Solve the differential equation `(tan^(-1) x- y) dx = (1 + x^2) dy`
Find the general solution of the differential equation `dy/dx - y = sin x`
x dy = (2y + 2x4 + x2) dx
(x + tan y) dy = sin 2y dx
Solve the differential equation \[\frac{dy}{dx}\] + y cot x = 2 cos x, given that y = 0 when x = \[\frac{\pi}{2}\] .
Find the integerating factor of the differential equation `xdy/dx - 2y = 2x^2` .
Solve the differential equation: (1 +x2 ) dy + 2xy dx = cot x dx
If f(x) = x + 1, find `"d"/"dx"("fof") ("x")`
Solve the differential equation: `(1 + x^2) dy/dx + 2xy - 4x^2 = 0,` subject to the initial condition y(0) = 0.
Solve the following differential equation:
`("x" + 2"y"^3) "dy"/"dx" = "y"`
Solve the following differential equation:
`"x" "dy"/"dx" + "2y" = "x"^2 * log "x"`
Solve the following differential equation:
`("x + y") "dy"/"dx" = 1`
Solve the following differential equation:
`("x + a")"dy"/"dx" - 3"y" = ("x + a")^5`
Solve the following differential equation:
y dx + (x - y2) dy = 0
Find the equation of the curve which passes through the origin and has the slope x + 3y - 1 at any point (x, y) on it.
Find the equation of the curve passing through the point `(3/sqrt2, sqrt2)` having a slope of the tangent to the curve at any point (x, y) is -`"4x"/"9y"`.
The integrating factor of the differential equation sin y `("dy"/"dx")` = cos y(1 - x cos y) is ______.
The integrating factor of the differential equation (1 + x2)dt = (tan-1 x - t)dx is ______.
Integrating factor of `dy/dx + y = x^2 + 5` is ______
Which of the following is a second order differential equation?
Let y = y(x), x > 1, be the solution of the differential equation `(x - 1)(dy)/(dx) + 2xy = 1/(x - 1)`, with y(2) = `(1 + e^4)/(2e^4)`. If y(3) = `(e^α + 1)/(βe^α)`, then the value of α + β is equal to ______.
If y = y(x) is the solution of the differential equation, `(dy)/(dx) + 2ytanx = sinx, y(π/3)` = 0, then the maximum value of the function y (x) over R is equal to ______.
If the slope of the tangent at (x, y) to a curve passing through `(1, π/4)` is given by `y/x - cos^2(y/x)`, then the equation of the curve is ______.
If sin x is the integrating factor (IF) of the linear differential equation `dy/dx + Py` = Q then P is ______.
Find the general solution of the differential equation:
`(x^2 + 1) dy/dx + 2xy = sqrt(x^2 + 4)`
Solve:
`xsinx dy/dx + (xcosx + sinx)y` = sin x
The slope of the tangent to the curve x = sin θ and y = cos 2θ at θ = `π/6` is ______.