हिंदी

Find the equation of the curve which passes through the origin and has the slope x + 3y - 1 at any point (x, y) on it. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the equation of the curve which passes through the origin and has the slope x + 3y - 1 at any point (x, y) on it.

योग

उत्तर

Let A (x, y) be the point on the curve y = f(x).

Then slope of the tangent to the curve at point A is `"dy"/"dx"`.

According to the given condition,

`"dy"/"dx" = "x" + 3"y" - 1`

∴ `"dy"/"dx" - 3"y" = "x - 1"`      ....(1)

This is the linear differential equation of the form

`"dy"/"dx" + "Py" = "Q"`, where P = - 3 and Q = x - 1

∴ I.F. = `"e"^(int "P dx") = "e"^(int - 3"dx") = "e"^(- 3"x")`

∴ the solution of (1) is given by

`"y" * ("I.F.") = int "Q" * ("I.F.") "dx" + "c"`

∴ `"y" * "e"^(- 3"x") = int ("x - 1") * "e"^(-3"x") "dx" + "c"`

∴ `"e"^(- 3"x") * "y" = ("x - 1") int "e"^(- 3"x") - int ["d"/"dx" ("x - 1") * int "e"^(- 3"x") "dx"] "dx" + "c"_1`

∴ `"e"^(- 3"x") * "y" = ("x - 1") * "e"^(- 3"x")/-3 - int 1 * "e"^(- 3"x") * "y"/-3 "dx" + "c"_1`

∴ `"e"^(- 3"x") * "y" = - 1/3 ("x - 1") * "e"^(- 3"x") + 1/3 int "e"^(- 3"x") "dx" + "c"_1`

∴ `"e"^(- 3"x") * "y" = - 1/3 ("x - 1") "e"^(- 3"x") + 1/3 * "e"^(- 3"x")/-3 + "c"_1`

∴ `"e"^(- 3"x") * "y" = - 1/3 ("x - 1")"e"^(- 3"x") - 1/9 "e"^(- 3"x") + "c"_1`

∴ 9y = - 3(x - 1) - 1 + 9`"c"_1 * e^("3x")`

∴ 9y + 3(x - 1) + 1 = `9"c"_1 * e^("3x")`

∴ 9y + 3x - 3 + 1 = `9"c"_1 * e^("3x")`

∴ 3(x + 3y) = 2 + `9"c"_1 * e^("3x")`

∴ 3(x + 3y) = 2 + `"c" * e^("3x")` where c = 9c1   ....(2)

This is the general equation of the curve.

But the required curve is passing through the origin (0, 0).

∴ by putting x = 0 and y= 0 in (2), we get

0 = 2 + c

∴ c = - 2

∴ from (2), the equation of the required curve is

3(x + 3y) = 2 - 2`e^("3x")`

i.e. 3(x + 3y) = 2(1 - `e^("3x")`).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Differential Equations - Exercise 6.5 [पृष्ठ २०७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 6 Differential Equations
Exercise 6.5 | Q 2 | पृष्ठ २०७

संबंधित प्रश्न

For the differential equation, find the general solution:

`x log x dy/dx + y=    2/x log x`


For the differential equation, find the general solution:

`x dy/dx + y - x + xy cot x = 0(x != 0)`


For the differential equation, find the general solution:

y dx + (x – y2) dy = 0


For the differential equation given, find a particular solution satisfying the given condition:

`(1 + x^2)dy/dx + 2xy = 1/(1 + x^2); y = 0`  when x = 1


The Integrating Factor of the differential equation `dy/dx - y = 2x^2` is ______.


The population of a village increases continuously at the rate proportional to the number of its inhabitants present at any time. If the population of the village was 20000 in 1999 and 25000 in the year 2004, what will be the population of the village in 2009?


Solve the differential equation `(tan^(-1) x- y) dx = (1 + x^2) dy`


\[\left( 2x - 10 y^3 \right)\frac{dy}{dx} + y = 0\]

(x + tan y) dy = sin 2y dx


dx + xdy = e−y sec2 y dy


\[\frac{dy}{dx}\] = y tan x − 2 sin x


\[\left( x^2 - 1 \right)\frac{dy}{dx} + 2\left( x + 2 \right)y = 2\left( x + 1 \right)\]

\[\frac{dy}{dx} + 2y = x e^{4x}\]

Find the particular solution of the differential equation \[\frac{dx}{dy} + x \cot y = 2y + y^2 \cot y, y ≠ 0\] given that x = 0 when \[y = \frac{\pi}{2}\].


Solve the following differential equation:- \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\]


Solve the differential equation \[\frac{dy}{dx}\] + y cot x = 2 cos x, given that y = 0 when x = \[\frac{\pi}{2}\] .


Find the integerating factor of the differential equation `x(dy)/(dx) - 2y = 2x^2`


Find the integerating factor of the differential equation `xdy/dx - 2y = 2x^2` . 


Solve the differential equation: `(1 + x^2) dy/dx + 2xy - 4x^2 = 0,` subject to the initial condition y(0) = 0.


Solve the following differential equation:

`cos^2 "x" * "dy"/"dx" + "y" = tan "x"`


Solve the following differential equation:

`"dy"/"dx" + "y" * sec "x" = tan "x"`


Solve the following differential equation dr + (2r cot θ + sin 2θ) dθ = 0.


Solve the following differential equation:

y dx + (x - y2) dy = 0


If the slope of the tangent to the curve at each of its point is equal to the sum of abscissa and the product of the abscissa and ordinate of the point. Also, the curve passes through the point (0, 1). Find the equation of the curve.


The integrating factor of the differential equation (1 + x2)dt = (tan-1 x - t)dx is ______.


Which of the following is a second order differential equation?


The solution of `(1 + x^2) ("d"y)/("d"x) + 2xy - 4x^2` = 0 is ______.


The integrating factor of the differential equation `x (dy)/(dx) - y = 2x^2` is


Let y = y(x), x > 1, be the solution of the differential equation `(x - 1)(dy)/(dx) + 2xy = 1/(x - 1)`, with y(2) = `(1 + e^4)/(2e^4)`. If y(3) = `(e^α + 1)/(βe^α)`, then the value of α + β is equal to ______.


Let the solution curve y = y(x) of the differential equation (4 + x2) dy – 2x (x2 + 3y + 4) dx = 0 pass through the origin. Then y (2) is equal to ______.


If the solution curve y = y(x) of the differential equation y2dx + (x2 – xy + y2)dy = 0, which passes through the point (1, 1) and intersects the line y = `sqrt(3)  x` at the point `(α, sqrt(3) α)`, then value of `log_e (sqrt(3)α)` is equal to ______.


Find the general solution of the differential equation:

`(x^2 + 1) dy/dx + 2xy = sqrt(x^2 + 4)`


If sec x + tan x is the integrating factor of `dy/dx + Py` = Q, then value of P is ______.


The slope of the tangent to the curve x = sin θ and y = cos 2θ at θ = `π/6` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×