Advertisements
Advertisements
प्रश्न
dx + xdy = e−y sec2 y dy
उत्तर
We have,
\[dx + \text{ x }dy = e^{- y} \sec^2 \text{ y }dy\]
\[ \Rightarrow dx = e^{- y} \sec^2 \text{ y } dy - \text{ x } dy\]
\[ \Rightarrow \frac{dx}{dy} = e^{- y} \sec^2 y - x\]
\[ \Rightarrow \frac{dx}{dy} + x = e^{- y} \sec^2 y . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dx}{dy} + Px = Q\]
where
\[P = 1\]
\[Q = e^{- y} \sec^2 y\]
\[ \therefore I.F. = e^{\int P\ dy} \]
\[ = e^{\int dy} \]
\[ = e^y \]
\[\text{Multiplying both sides of }\left( 1 \right)\text{ by }e^y ,\text{ we get }\]
\[ e^y \left( \frac{dx}{dy} + x \right) = e^y e^{- y} \sec^2 y\]
\[ \Rightarrow e^y \frac{dx}{dy} + x e^y = \sec^2 y\]
Integrating both sides with respect to y, we get
\[x e^y = \int \sec^2 y\text{ dy } + C\]
\[ \Rightarrow x e^y = \tan y + C\]
\[\text{ Hence, } \text{ x }e^y = \tan y + C\text{ is the required solution.} \]
APPEARS IN
संबंधित प्रश्न
Find the the differential equation for all the straight lines, which are at a unit distance from the origin.
For the differential equation, find the general solution:
`dy/dx + 3y = e^(-2x)`
For the differential equation, find the general solution:
`dy/dx + y/x = x^2`
For the differential equation, find the general solution:
`dy/dx + (sec x) y = tan x (0 <= x < pi/2)`
For the differential equation, find the general solution:
(1 + x2) dy + 2xy dx = cot x dx (x ≠ 0)
For the differential equation, find the general solution:
`(x + 3y^2) dy/dx = y(y > 0)`
The population of a village increases continuously at the rate proportional to the number of its inhabitants present at any time. If the population of the village was 20000 in 1999 and 25000 in the year 2004, what will be the population of the village in 2009?
\[\frac{dy}{dx}\] = y tan x − 2 sin x
\[\frac{dy}{dx}\] + y cos x = sin x cos x
Find the general solution of the differential equation \[x\frac{dy}{dx} + 2y = x^2\]
Find the particular solution of the differential equation \[\frac{dx}{dy} + x \cot y = 2y + y^2 \cot y, y ≠ 0\] given that x = 0 when \[y = \frac{\pi}{2}\].
Solve the differential equation \[\frac{dy}{dx}\] + y cot x = 2 cos x, given that y = 0 when x = \[\frac{\pi}{2}\] .
Find the integerating factor of the differential equation `x(dy)/(dx) - 2y = 2x^2`
Solve the following differential equation:
`"dy"/"dx" + "y"/"x" = "x"^3 - 3`
Solve the following differential equation:
`("x + y") "dy"/"dx" = 1`
Solve the following differential equation:
y dx + (x - y2) dy = 0
Solve the following differential equation:
`(1 + "x"^2) "dy"/"dx" + "y" = "e"^(tan^-1 "x")`
Find the equation of the curve passing through the point `(3/sqrt2, sqrt2)` having a slope of the tangent to the curve at any point (x, y) is -`"4x"/"9y"`.
The curve passes through the point (0, 2). The sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at any point by 5. Find the equation of the curve.
`(x + 2y^3 ) dy/dx = y`
The integrating factor of the differential equation sin y `("dy"/"dx")` = cos y(1 - x cos y) is ______.
The solution of `(1 + x^2) ("d"y)/("d"x) + 2xy - 4x^2` = 0 is ______.
The integrating factor of differential equation `(1 - y)^2 (dx)/(dy) + yx = ay(-1 < y < 1)`
State whether the following statement is true or false.
The integrating factor of the differential equation `(dy)/(dx) + y/x` = x3 is – x.
Let y = f(x) be a real-valued differentiable function on R (the set of all real numbers) such that f(1) = 1. If f(x) satisfies xf'(x) = x2 + f(x) – 2, then the area bounded by f(x) with x-axis between ordinates x = 0 and x = 3 is equal to ______.
Let the solution curve y = y(x) of the differential equation (4 + x2) dy – 2x (x2 + 3y + 4) dx = 0 pass through the origin. Then y (2) is equal to ______.
If sec x + tan x is the integrating factor of `dy/dx + Py` = Q, then value of P is ______.
The slope of tangent at any point on the curve is 3. lf the curve passes through (1, 1), then the equation of curve is ______.