हिंदी

Find the equation of the curve passing through the point (32,2) having a slope of the tangent to the curve at any point (x, y) is -4x9y4x9y. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the equation of the curve passing through the point `(3/sqrt2, sqrt2)` having a slope of the tangent to the curve at any point (x, y) is -`"4x"/"9y"`.

योग

उत्तर

Let A(x, y) be the point on the curve y = f(x).

Then the slope of the tangent to the curve at point A is `"dy"/"dx"`.

According to the given condition

`"dy"/"dx" = - "4x"/"9y"`

∴ y dy = `- 4/9 "x  dx"`

Integrating both sides, we get

`int "y dy" = - 4/9 int "x dx"`

∴ `"y"^2/2 = - 4/9 * "x"^2/2 + "c"_1`

∴ 9y2 = - 4x2 + 18c1

∴ 4x2 + 9y2 = c1 where c = 18c1    .....(1)

This is the general equation of the curve.

But the required curve is passing through the point `(3/sqrt2, sqrt2)`.

∴ by putting x = `3/sqrt2` and y = `sqrt2` in (1), we get

`4(3/sqrt2)^2 + 9(sqrt2)^2 = "c"`

∴ 18 + 18 = c

∴ c = 36

∴ from (1), the equation of the required curve is 4x2 + 9y2 = 36.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Differential Equations - Exercise 6.5 [पृष्ठ २०७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 6 Differential Equations
Exercise 6.5 | Q 3 | पृष्ठ २०७

संबंधित प्रश्न

For the differential equation, find the general solution:

`dy/dx + y/x = x^2`


For the differential equation, find the general solution:

(1 + x2) dy + 2xy dx = cot x dx (x ≠ 0)


For the differential equation, find the general solution:

`x dy/dx + y - x + xy cot x = 0(x != 0)`


For the differential equation, find the general solution:

y dx + (x – y2) dy = 0


For the differential equation, find the general solution:

`(x + 3y^2) dy/dx = y(y > 0)`


For the differential equation given, find a particular solution satisfying the given condition:

`dy/dx + 2y tan x = sin x; y = 0 " when x " = pi/3`


For the differential equation given, find a particular solution satisfying the given condition:

`dy/dx - 3ycotx = sin 2x; y = 2`  when `x = pi/2`


The population of a village increases continuously at the rate proportional to the number of its inhabitants present at any time. If the population of the village was 20000 in 1999 and 25000 in the year 2004, what will be the population of the village in 2009?


Find the general solution of the differential equation `dy/dx - y = sin x`


\[\frac{dy}{dx} + y \tan x = x^2 \cos^2 x\]

\[\left( 1 + x^2 \right)\frac{dy}{dx} + y = e^{tan^{- 1} x}\]

x dy = (2y + 2x4 + x2) dx


\[\left( 2x - 10 y^3 \right)\frac{dy}{dx} + y = 0\]

\[\frac{dy}{dx} + 2y = x e^{4x}\]

Find the general solution of the differential equation \[x\frac{dy}{dx} + 2y = x^2\]


Find the general solution of the differential equation \[\frac{dy}{dx} - y = \cos x\]


Solve the differential equation \[\left( y + 3 x^2 \right)\frac{dx}{dy} = x\]


Solve the following differential equation: \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\] .


Solve the differential equation \[\frac{dy}{dx}\] + y cot x = 2 cos x, given that y = 0 when x = \[\frac{\pi}{2}\] .


Find the integerating factor of the differential equation `xdy/dx - 2y = 2x^2` . 


Solve the differential equation: `(1 + x^2) dy/dx + 2xy - 4x^2 = 0,` subject to the initial condition y(0) = 0.


Solve the following differential equation:

`("x" + 2"y"^3) "dy"/"dx" = "y"`


Solve the following differential equation:

`"dy"/"dx" + "y" * sec "x" = tan "x"`


Find the equation of the curve which passes through the origin and has the slope x + 3y - 1 at any point (x, y) on it.


Integrating factor of `dy/dx + y = x^2 + 5` is ______ 


Integrating factor of the differential equation `(1 - x^2) ("d"y)/("d"x) - xy` = 1 is ______.


Let the solution curve y = y(x) of the differential equation (4 + x2) dy – 2x (x2 + 3y + 4) dx = 0 pass through the origin. Then y (2) is equal to ______.


If the solution curve y = y(x) of the differential equation y2dx + (x2 – xy + y2)dy = 0, which passes through the point (1, 1) and intersects the line y = `sqrt(3)  x` at the point `(α, sqrt(3) α)`, then value of `log_e (sqrt(3)α)` is equal to ______.


If the slope of the tangent at (x, y) to a curve passing through `(1, π/4)` is given by `y/x - cos^2(y/x)`, then the equation of the curve is ______.


Solve the differential equation `dy/dx+2xy=x` by completing the following activity.

Solution: `dy/dx+2xy=x`       ...(1)

This is the linear differential equation of the form `dy/dx +Py =Q,"where"`

`P=square` and Q = x

∴ `I.F. = e^(intPdx)=square`

The solution of (1) is given by

`y.(I.F.)=intQ(I.F.)dx+c=intsquare  dx+c`

∴ `ye^(x^2) = square`

This is the general solution.


The slope of tangent at any point on the curve is 3. lf the curve passes through (1, 1), then the equation of curve is ______.


The slope of the tangent to the curve x = sin θ and y = cos 2θ at θ = `π/6` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×