English

Find the equation of the curve passing through the point (32,2) having a slope of the tangent to the curve at any point (x, y) is -4x9y4x9y. - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the equation of the curve passing through the point `(3/sqrt2, sqrt2)` having a slope of the tangent to the curve at any point (x, y) is -`"4x"/"9y"`.

Sum

Solution

Let A(x, y) be the point on the curve y = f(x).

Then the slope of the tangent to the curve at point A is `"dy"/"dx"`.

According to the given condition

`"dy"/"dx" = - "4x"/"9y"`

∴ y dy = `- 4/9 "x  dx"`

Integrating both sides, we get

`int "y dy" = - 4/9 int "x dx"`

∴ `"y"^2/2 = - 4/9 * "x"^2/2 + "c"_1`

∴ 9y2 = - 4x2 + 18c1

∴ 4x2 + 9y2 = c1 where c = 18c1    .....(1)

This is the general equation of the curve.

But the required curve is passing through the point `(3/sqrt2, sqrt2)`.

∴ by putting x = `3/sqrt2` and y = `sqrt2` in (1), we get

`4(3/sqrt2)^2 + 9(sqrt2)^2 = "c"`

∴ 18 + 18 = c

∴ c = 36

∴ from (1), the equation of the required curve is 4x2 + 9y2 = 36.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Differential Equations - Exercise 6.5 [Page 207]

RELATED QUESTIONS

Find the the differential equation for all the straight lines, which are at a unit distance from the origin.


For the differential equation, find the general solution:

`dy/dx  + 2y = sin x`


For the differential equation, find the general solution:

`x dy/dx +  2y= x^2 log x`


For the differential equation, find the general solution:

(1 + x2) dy + 2xy dx = cot x dx (x ≠ 0)


For the differential equation, find the general solution:

`x dy/dx + y - x + xy cot x = 0(x != 0)`


For the differential equation, find the general solution:

`(x + 3y^2) dy/dx = y(y > 0)`


For the differential equation given, find a particular solution satisfying the given condition:

`dy/dx + 2y tan x = sin x; y = 0 " when x " = pi/3`


The Integrating Factor of the differential equation `dy/dx - y = 2x^2` is ______.


Solve the differential equation `(tan^(-1) x- y) dx = (1 + x^2) dy`


\[\left( 2x - 10 y^3 \right)\frac{dy}{dx} + y = 0\]

(x + tan y) dy = sin 2y dx


dx + xdy = e−y sec2 y dy


\[\left( \sin x \right)\frac{dy}{dx} + y \cos x = 2 \sin^2 x \cos x\]

\[\left( x^2 - 1 \right)\frac{dy}{dx} + 2\left( x + 2 \right)y = 2\left( x + 1 \right)\]

\[x\frac{dy}{dx} + 2y = x \cos x\]

\[\frac{dy}{dx} + 2y = x e^{4x}\]

Solve the differential equation \[\left( y + 3 x^2 \right)\frac{dx}{dy} = x\]


Find the particular solution of the differential equation \[\frac{dx}{dy} + x \cot y = 2y + y^2 \cot y, y ≠ 0\] given that x = 0 when \[y = \frac{\pi}{2}\].


Solve the differential equation \[\frac{dy}{dx}\] + y cot x = 2 cos x, given that y = 0 when x = \[\frac{\pi}{2}\] .


If f(x) = x + 1, find `"d"/"dx"("fof") ("x")`


Solve the following differential equation:

`"dy"/"dx" + "y" * sec "x" = tan "x"`


Solve the following differential equation:

`("x + y") "dy"/"dx" = 1`


Solve the following differential equation dr + (2r cot θ + sin 2θ) dθ = 0.


Solve the following differential equation:

y dx + (x - y2) dy = 0


Find the equation of the curve which passes through the origin and has the slope x + 3y - 1 at any point (x, y) on it.


The integrating factor of `(dy)/(dx) + y` = e–x is ______.


The integrating factor of the differential equation (1 + x2)dt = (tan-1 x - t)dx is ______.


Integrating factor of `dy/dx + y = x^2 + 5` is ______ 


State whether the following statement is true or false.

The integrating factor of the differential equation `(dy)/(dx) + y/x` = x3 is – x.


If y = y(x) is the solution of the differential equation, `(dy)/(dx) + 2ytanx = sinx, y(π/3)` = 0, then the maximum value of the function y (x) over R is equal to ______.


Let y = y(x) be a solution curve of the differential equation (y + 1)tan2xdx + tanxdy + ydx = 0, `x∈(0, π/2)`. If `lim_(x→0^+)` xy(x) = 1, then the value of `y(π/2)` is ______.


If the slope of the tangent at (x, y) to a curve passing through `(1, π/4)` is given by `y/x - cos^2(y/x)`, then the equation of the curve is ______.


The solution of the differential equation `dx/dt = (xlogx)/t` is ______.


Find the general solution of the differential equation:

`(x^2 + 1) dy/dx + 2xy = sqrt(x^2 + 4)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×