Advertisements
Advertisements
Question
The Integrating Factor of the differential equation `dy/dx - y = 2x^2` is ______.
Options
e-x
e-y
`1/x`
x
Solution
The Integrating Factor of the differential equation `dy/dx - y = 2x^2` is `underline(1/x)`
Explanation:
The differential equation is
`x dy/dx - y = 2x^2`
or `dy/dx - 1/x y = 2x`
Here `P = - 1/x, Q = 2x`
∴ `∫ P dx =int - 1/x` dx
=` - log x = log 1/x`
⇒ `I.F. = e^(int P dx)`
`= e^(log 1//x) = 1/x`
APPEARS IN
RELATED QUESTIONS
For the differential equation, find the general solution:
`dy/dx + y/x = x^2`
For the differential equation, find the general solution:
`dy/dx + (sec x) y = tan x (0 <= x < pi/2)`
For the differential equation, find the general solution:
(1 + x2) dy + 2xy dx = cot x dx (x ≠ 0)
For the differential equation, find the general solution:
y dx + (x – y2) dy = 0
For the differential equation, find the general solution:
`(x + 3y^2) dy/dx = y(y > 0)`
For the differential equation given, find a particular solution satisfying the given condition:
`dy/dx + 2y tan x = sin x; y = 0 " when x " = pi/3`
For the differential equation given, find a particular solution satisfying the given condition:
`(1 + x^2)dy/dx + 2xy = 1/(1 + x^2); y = 0` when x = 1
The integrating factor of the differential equation.
`(1 - y^2) dx/dy + yx = ay(-1 < y < 1)` is ______.
The population of a village increases continuously at the rate proportional to the number of its inhabitants present at any time. If the population of the village was 20000 in 1999 and 25000 in the year 2004, what will be the population of the village in 2009?
Solve the differential equation `(tan^(-1) x- y) dx = (1 + x^2) dy`
Find the general solution of the differential equation `dy/dx - y = sin x`
dx + xdy = e−y sec2 y dy
\[\frac{dy}{dx}\] = y tan x − 2 sin x
Solve the differential equation \[\left( y + 3 x^2 \right)\frac{dx}{dy} = x\]
Solve the differential equation \[\frac{dy}{dx}\] + y cot x = 2 cos x, given that y = 0 when x = \[\frac{\pi}{2}\] .
Solve the following differential equation:-
\[\left( 1 + x^2 \right)\frac{dy}{dx} - 2xy = \left( x^2 + 2 \right)\left( x^2 + 1 \right)\]
Find the integerating factor of the differential equation `x(dy)/(dx) - 2y = 2x^2`
Solve the following differential equation:
`cos^2 "x" * "dy"/"dx" + "y" = tan "x"`
Solve the following differential equation:
`("x" + 2"y"^3) "dy"/"dx" = "y"`
Solve the following differential equation:
`"x" "dy"/"dx" + "2y" = "x"^2 * log "x"`
Solve the following differential equation:
`("x + y") "dy"/"dx" = 1`
Solve the following differential equation:
y dx + (x - y2) dy = 0
Solve the following differential equation:
`(1 - "x"^2) "dy"/"dx" + "2xy" = "x"(1 - "x"^2)^(1/2)`
Solve the following differential equation:
`(1 + "x"^2) "dy"/"dx" + "y" = "e"^(tan^-1 "x")`
Find the equation of the curve passing through the point `(3/sqrt2, sqrt2)` having a slope of the tangent to the curve at any point (x, y) is -`"4x"/"9y"`.
The integrating factor of the differential equation sin y `("dy"/"dx")` = cos y(1 - x cos y) is ______.
The equation x2 + yx2 + x + y = 0 represents
The integrating factor of the differential equation `x (dy)/(dx) - y = 2x^2` is
State whether the following statement is true or false.
The integrating factor of the differential equation `(dy)/(dx) + y/x` = x3 is – x.
If y = y(x) is the solution of the differential equation, `(dy)/(dx) + 2ytanx = sinx, y(π/3)` = 0, then the maximum value of the function y (x) over R is equal to ______.
Let y = f(x) be a real-valued differentiable function on R (the set of all real numbers) such that f(1) = 1. If f(x) satisfies xf'(x) = x2 + f(x) – 2, then the area bounded by f(x) with x-axis between ordinates x = 0 and x = 3 is equal to ______.
The solution of the differential equation `dx/dt = (xlogx)/t` is ______.
The slope of tangent at any point on the curve is 3. lf the curve passes through (1, 1), then the equation of curve is ______.
The slope of the tangent to the curve x = sin θ and y = cos 2θ at θ = `π/6` is ______.