English

Find the General Solution of the Differential Equation Dybydx -y = Sin X - Mathematics

Advertisements
Advertisements

Question

Find the general solution of the differential equation `dy/dx - y = sin x`

Solution

The given differential equation is

`dy/dx - y = sin x` .....(1)

Clearly, it is a linear differential equation of the form `dy/dx + Py=Q`

Here

shaalaa.com
  Is there an error in this question or solution?
2016-2017 (March) All India Set 3

RELATED QUESTIONS

For the differential equation, find the general solution:

`dy/dx + 3y = e^(-2x)`


For the differential equation, find the general solution:

`x dy/dx +  2y= x^2 log x`


For the differential equation, find the general solution:

`(x + 3y^2) dy/dx = y(y > 0)`


For the differential equation given, find a particular solution satisfying the given condition:

`dy/dx + 2y tan x = sin x; y = 0 " when x " = pi/3`


For the differential equation given, find a particular solution satisfying the given condition:

`dy/dx - 3ycotx = sin 2x; y = 2`  when `x = pi/2`


Find the equation of the curve passing through the origin given that the slope of the tangent to the curve at any point (x, y) is equal to the sum of the coordinates of the point.


Solve the differential equation `x dy/dx + y = x cos x + sin x`,  given that y = 1 when `x = pi/2`


\[\frac{dy}{dx} + y \tan x = x^2 \cos^2 x\]

x dy = (2y + 2x4 + x2) dx


\[\left( 2x - 10 y^3 \right)\frac{dy}{dx} + y = 0\]

dx + xdy = e−y sec2 y dy


\[\left( x^2 - 1 \right)\frac{dy}{dx} + 2\left( x + 2 \right)y = 2\left( x + 1 \right)\]

Solve the following differential equation: \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\] .


Solve the differential equation \[\frac{dy}{dx}\] + y cot x = 2 cos x, given that y = 0 when x = \[\frac{\pi}{2}\] .


Solve the following differential equation:

`cos^2 "x" * "dy"/"dx" + "y" = tan "x"`


Solve the following differential equation:

`("x" + 2"y"^3) "dy"/"dx" = "y"`


Solve the following differential equation:

y dx + (x - y2) dy = 0


Solve the following differential equation:

`(1 - "x"^2) "dy"/"dx" + "2xy" = "x"(1 - "x"^2)^(1/2)`


Solve the following differential equation:

`(1 + "x"^2) "dy"/"dx" + "y" = "e"^(tan^-1 "x")`


Find the equation of the curve which passes through the origin and has the slope x + 3y - 1 at any point (x, y) on it.


If the slope of the tangent to the curve at each of its point is equal to the sum of abscissa and the product of the abscissa and ordinate of the point. Also, the curve passes through the point (0, 1). Find the equation of the curve.


Form the differential equation of all circles which pass through the origin and whose centers lie on X-axis.


Integrating factor of the differential equation `(1 - x^2) ("d"y)/("d"x) - xy` = 1 is ______.


The integrating factor of the differential equation `x (dy)/(dx) - y = 2x^2` is


The integrating factor of differential equation `(1 - y)^2  (dx)/(dy) + yx = ay(-1 < y < 1)`


Let y = y(x), x > 1, be the solution of the differential equation `(x - 1)(dy)/(dx) + 2xy = 1/(x - 1)`, with y(2) = `(1 + e^4)/(2e^4)`. If y(3) = `(e^α + 1)/(βe^α)`, then the value of α + β is equal to ______.


Let y = f(x) be a real-valued differentiable function on R (the set of all real numbers) such that f(1) = 1. If f(x) satisfies xf'(x) = x2 + f(x) – 2, then the area bounded by f(x) with x-axis between ordinates x = 0 and x = 3 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×