Advertisements
Advertisements
Question
x dy = (2y + 2x4 + x2) dx
Solution
We have,
\[x dy = \left( 2y + 2 x^4 + x^2 \right)dx\]
\[ \Rightarrow \frac{dy}{dx} = \frac{2}{x}y + 2 x^3 + x\]
\[ \Rightarrow \frac{dy}{dx} - \frac{2}{x}y = 2 x^3 + x . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dy}{dx} + Py = Q\]
where
\[P = - \frac{2}{x}\]
\[Q = 2 x^3 + x\]
\[ \therefore I.F. = e^{\int P\ dx} \]
\[ = e^{- \int\frac{2}{x} dx} \]
\[ = e^{- 2\log x} \]
\[ = \frac{1}{x^2}\]
\[\text{ Multiplying both sides of } \left( 1 \right)\text{ by }\frac{1}{x^2}, \text{ we get }\]
\[\frac{1}{x^2} \left( \frac{dy}{dx} - \frac{2}{x}y \right) = \frac{1}{x^2} \left( 2 x^3 + x \right)\]
\[ \Rightarrow \frac{1}{x^2}\frac{dy}{dx} - \frac{2}{x^3}y = 2x + \frac{1}{x}\]
Integrating both sides with respect to x, we get
\[\frac{1}{x^2}y = \int\left( 2x + \frac{1}{x} \right)dx + C\]
\[ \Rightarrow \frac{1}{x^2}y = x^2 + \log x + C\]
\[ \Rightarrow y = x^4 + x^2 \log x + C x^2 \]
\[\text{Hence, }y = x^4 + x^2 \log x + C x^2\text{ is the required solution.}\]
APPEARS IN
RELATED QUESTIONS
Find the the differential equation for all the straight lines, which are at a unit distance from the origin.
For the differential equation, find the general solution:
`dy/dx + y/x = x^2`
For the differential equation, find the general solution:
`dy/dx + (sec x) y = tan x (0 <= x < pi/2)`
For the differential equation, find the general solution:
`x dy/dx + 2y= x^2 log x`
Find the general solution of the differential equation `dy/dx - y = sin x`
(x + tan y) dy = sin 2y dx
Solve the differential equation \[\left( x + 2 y^2 \right)\frac{dy}{dx} = y\], given that when x = 2, y = 1.
Find the general solution of the differential equation \[\frac{dy}{dx} - y = \cos x\]
Find the particular solution of the differential equation \[\frac{dx}{dy} + x \cot y = 2y + y^2 \cot y, y ≠ 0\] given that x = 0 when \[y = \frac{\pi}{2}\].
Solve the following differential equation:- \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\]
If f(x) = x + 1, find `"d"/"dx"("fof") ("x")`
Solve the following differential equation:
`"dy"/"dx" + "y"/"x" = "x"^3 - 3`
Solve the following differential equation:
`cos^2 "x" * "dy"/"dx" + "y" = tan "x"`
Solve the following differential equation:
`("x + y") "dy"/"dx" = 1`
Solve the following differential equation:
`("x + a")"dy"/"dx" - 3"y" = ("x + a")^5`
Solve the following differential equation dr + (2r cot θ + sin 2θ) dθ = 0.
Solve the following differential equation:
`(1 - "x"^2) "dy"/"dx" + "2xy" = "x"(1 - "x"^2)^(1/2)`
Find the equation of the curve which passes through the origin and has the slope x + 3y - 1 at any point (x, y) on it.
Form the differential equation of all circles which pass through the origin and whose centers lie on X-axis.
Find the general solution of the equation `("d"y)/("d"x) - y` = 2x.
Solution: The equation `("d"y)/("d"x) - y` = 2x
is of the form `("d"y)/("d"x) + "P"y` = Q
where P = `square` and Q = `square`
∴ I.F. = `"e"^(int-"d"x)` = e–x
∴ the solution of the linear differential equation is
ye–x = `int 2x*"e"^-x "d"x + "c"`
∴ ye–x = `2int x*"e"^-x "d"x + "c"`
= `2{x int"e"^-x "d"x - int square "d"x* "d"/("d"x) square"d"x} + "c"`
= `2{x ("e"^-x)/(-1) - int ("e"^-x)/(-1)*1"d"x} + "c"`
∴ ye–x = `-2x*"e"^-x + 2int"e"^-x "d"x + "c"`
∴ e–xy = `-2x*"e"^-x+ 2 square + "c"`
∴ `y + square + square` = cex is the required general solution of the given differential equation
The slope of the tangent to the curves x = 4t3 + 5, y = t2 - 3 at t = 1 is ______
Which of the following is a second order differential equation?
The solution of `(1 + x^2) ("d"y)/("d"x) + 2xy - 4x^2` = 0 is ______.
The integrating factor of the differential equation `x (dy)/(dx) - y = 2x^2` is
State whether the following statement is true or false.
The integrating factor of the differential equation `(dy)/(dx) + y/x` = x3 is – x.
Let y = f(x) be a real-valued differentiable function on R (the set of all real numbers) such that f(1) = 1. If f(x) satisfies xf'(x) = x2 + f(x) – 2, then the area bounded by f(x) with x-axis between ordinates x = 0 and x = 3 is equal to ______.
If the slope of the tangent at (x, y) to a curve passing through `(1, π/4)` is given by `y/x - cos^2(y/x)`, then the equation of the curve is ______.
The slope of tangent at any point on the curve is 3. lf the curve passes through (1, 1), then the equation of curve is ______.
Solve:
`xsinx dy/dx + (xcosx + sinx)y` = sin x
The slope of the tangent to the curve x = sin θ and y = cos 2θ at θ = `π/6` is ______.