English

Find the General Solution of the Differential Equation D Y D X − Y = Cos X - Mathematics

Advertisements
Advertisements

Question

Find the general solution of the differential equation \[\frac{dy}{dx} - y = \cos x\]

Sum

Solution

We have,
\[\frac{dy}{dx} - y = \cos x . . . . . . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dy}{dx} + Py = Q\]
\[\text{ where }P = - 1\text{ and }Q = \cos x\]
\[ \therefore I . F . = e^{\int P\ dx} \]
\[ = e^{- \int dx} \]
\[ = e^{- x} \]
\[\text{ Multiplying both sides of }\left( 1 \right)\text{ by }I . F . = e^{- x} ,\text{ we get }\]
\[ e^{- x} \left( \frac{dy}{dx} - y \right) = e^{- x} \cos x \]
\[ \Rightarrow e^{- x} \frac{dy}{dx} - e^{- x} y = e^{- x} \cos x\]
Integrating both sides with respect to x, we get
\[y e^{- x} = \int e^{- x} \cos x dx + C\]
\[ \Rightarrow y e^{- x} = I + C . . . . . . . . \left( 2 \right)\]
Here, 
\[I = \int e^{- x} \cos x dx . . . . . . . . . . \left( 3 \right)\]
\[ \Rightarrow I = e^{- x} \sin x - \int\left( - e^{- x} \sin x \right) dx\]
\[ \Rightarrow I = e^{- x} \sin x + \int e^{- x} \sin x dx\]
\[ \Rightarrow I = e^{- x} \sin x - e^{- x} \cos x - \int\left[ \left( - e^{- x} \right) \times \left( - \cos x \right) \right] dx\]
\[ \Rightarrow I = e^{- x} \sin x - e^{- x} \cos x - \int e^{- x} \cos x dx\]
\[ \Rightarrow I = e^{- x} \sin x - e^{- x} \cos x - I .............\left[\text{From (3)} \right]\]
\[ \Rightarrow 2I = e^{- x} \left( \sin x - \cos x \right)\]
\[ \Rightarrow I = \frac{e^{- x}}{2}\left( \sin x - \cos x \right) . . . . . . . . . . . \left( 4 \right)\]
\[\text{ From }\left( 2 \right)\text{ and }\left( 4 \right)\text{ we get }\]
\[ \Rightarrow y e^{- x} = \frac{e^{- x}}{2}\left( \sin x - \cos x \right) + C\]
\[ \Rightarrow y = \frac{1}{2}\left( \sin x - \cos x \right) + C e^x \]
\[\text{ Hence, }y = \frac{1}{2}\left( \sin x - \cos x \right) + C e^x \text{ is the required solution.} \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.10 [Page 107]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.10 | Q 39 | Page 107

RELATED QUESTIONS

For the differential equation, find the general solution:

`dy/dx  + 2y = sin x`


For the differential equation, find the general solution:

`dy/dx + 3y = e^(-2x)`


For the differential equation, find the general solution:

`dy/dx + y/x = x^2`


For the differential equation, find the general solution:

`dy/dx + (sec x) y = tan x (0 <= x < pi/2)`


For the differential equation, find the general solution:

`cos^2 x dy/dx + y = tan x(0 <= x < pi/2)`


For the differential equation, find the general solution:

`x log x dy/dx + y=    2/x log x`


For the differential equation, find the general solution:

(1 + x2) dy + 2xy dx = cot x dx (x ≠ 0)


For the differential equation, find the general solution:

`x dy/dx + y - x + xy cot x = 0(x != 0)`


For the differential equation, find the general solution:

`(x + y) dy/dx = 1`


The population of a village increases continuously at the rate proportional to the number of its inhabitants present at any time. If the population of the village was 20000 in 1999 and 25000 in the year 2004, what will be the population of the village in 2009?


Solve the differential equation `x dy/dx + y = x cos x + sin x`,  given that y = 1 when `x = pi/2`


\[\left( 2x - 10 y^3 \right)\frac{dy}{dx} + y = 0\]

(x + tan y) dy = sin 2y dx


\[\left( x^2 - 1 \right)\frac{dy}{dx} + 2\left( x + 2 \right)y = 2\left( x + 1 \right)\]

\[\frac{dy}{dx} - y = x e^x\]

\[\frac{dy}{dx} + 2y = x e^{4x}\]

Solve the following differential equation:-
\[\left( 1 + x^2 \right)\frac{dy}{dx} - 2xy = \left( x^2 + 2 \right)\left( x^2 + 1 \right)\]


Solve the differential equation: (1 +x) dy + 2xy dx = cot x dx 


Solve the differential equation: `(1 + x^2) dy/dx + 2xy - 4x^2 = 0,` subject to the initial condition y(0) = 0.


Solve the following differential equation:

`cos^2 "x" * "dy"/"dx" + "y" = tan "x"`


Solve the following differential equation:

`("x" + 2"y"^3) "dy"/"dx" = "y"`


Solve the following differential equation:

`"x" "dy"/"dx" + "2y" = "x"^2 * log "x"`


Solve the following differential equation:

`("x + y") "dy"/"dx" = 1`


Solve the following differential equation dr + (2r cot θ + sin 2θ) dθ = 0.


The curve passes through the point (0, 2). The sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at any point by 5. Find the equation of the curve.


If the slope of the tangent to the curve at each of its point is equal to the sum of abscissa and the product of the abscissa and ordinate of the point. Also, the curve passes through the point (0, 1). Find the equation of the curve.


The integrating factor of `(dy)/(dx) + y` = e–x is ______.


The slope of the tangent to the curves x = 4t3 + 5, y = t2 - 3 at t = 1 is ______


Integrating factor of `dy/dx + y = x^2 + 5` is ______ 


The solution of `(1 + x^2) ("d"y)/("d"x) + 2xy - 4x^2` = 0 is ______.


The equation x2 + yx2 + x + y = 0 represents


State whether the following statement is true or false.

The integrating factor of the differential equation `(dy)/(dx) + y/x` = x3 is – x.


Let y = y(x) be the solution curve of the differential equation `(dy)/(dx) + ((2x^2 + 11x + 13)/(x^3 + 6x^2 + 11x + 6)) y = ((x + 3))/(x + 1), x > - 1`, which passes through the point (0, 1). Then y(1) is equal to ______.


If the solution curve y = y(x) of the differential equation y2dx + (x2 – xy + y2)dy = 0, which passes through the point (1, 1) and intersects the line y = `sqrt(3)  x` at the point `(α, sqrt(3) α)`, then value of `log_e (sqrt(3)α)` is equal to ______.


If the slope of the tangent at (x, y) to a curve passing through `(1, π/4)` is given by `y/x - cos^2(y/x)`, then the equation of the curve is ______.


Solve:

`xsinx dy/dx + (xcosx + sinx)y` = sin x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×