English

The integrating factor of dydx+y = e–x is ______. - Mathematics and Statistics

Advertisements
Advertisements

Question

The integrating factor of `(dy)/(dx) + y` = e–x is ______.

Options

  • x

  • –x

  • ex

  • e–x

MCQ
Fill in the Blanks

Solution

The integrating factor of `(dy)/(dx) + y` = e–x is `bb(underline(e^x))`.

Explanation

`(dy)/(dx) + y` = e–x

The given equation is of the form `(dy)/(dx) + py` = Q

Where, P = 1 and Q = e–x

∴ I.F. = `e^(int^(pdx)` = `e^(int^(1dx)` = ex

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Differential Equation and Applications - Miscellaneous Exercise 8 [Page 172]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
Chapter 8 Differential Equation and Applications
Miscellaneous Exercise 8 | Q 1.09 | Page 172

RELATED QUESTIONS

For the differential equation, find the general solution:

`x dy/dx +  2y= x^2 log x`


For the differential equation, find the general solution:

(1 + x2) dy + 2xy dx = cot x dx (x ≠ 0)


For the differential equation, find the general solution:

y dx + (x – y2) dy = 0


For the differential equation given, find a particular solution satisfying the given condition:

`dy/dx - 3ycotx = sin 2x; y = 2`  when `x = pi/2`


The integrating factor of the differential equation.

`(1 - y^2) dx/dy + yx = ay(-1 < y < 1)` is ______.


\[\left( 1 + x^2 \right)\frac{dy}{dx} + y = e^{tan^{- 1} x}\]

x dy = (2y + 2x4 + x2) dx


(x + tan y) dy = sin 2y dx


dx + xdy = e−y sec2 y dy


\[\frac{dy}{dx}\] = y tan x − 2 sin x


\[\left( x^2 - 1 \right)\frac{dy}{dx} + 2\left( x + 2 \right)y = 2\left( x + 1 \right)\]

\[\frac{dy}{dx} + 2y = x e^{4x}\]

Solve the differential equation: (1 +x) dy + 2xy dx = cot x dx 


If f(x) = x + 1, find `"d"/"dx"("fof") ("x")`


Solve the following differential equation:

`"dy"/"dx" + "y"/"x" = "x"^3 - 3`


Solve the following differential equation:

`cos^2 "x" * "dy"/"dx" + "y" = tan "x"`


Solve the following differential equation:

`("x + a")"dy"/"dx" - 3"y" = ("x + a")^5`


Solve the following differential equation:

`(1 + "x"^2) "dy"/"dx" + "y" = "e"^(tan^-1 "x")`


The curve passes through the point (0, 2). The sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at any point by 5. Find the equation of the curve.


If the slope of the tangent to the curve at each of its point is equal to the sum of abscissa and the product of the abscissa and ordinate of the point. Also, the curve passes through the point (0, 1). Find the equation of the curve.


`(x + 2y^3 ) dy/dx = y`


The integrating factor of the differential equation (1 + x2)dt = (tan-1 x - t)dx is ______.


The integrating factor of differential equation `(1 - y)^2  (dx)/(dy) + yx = ay(-1 < y < 1)`


State whether the following statement is true or false.

The integrating factor of the differential equation `(dy)/(dx) + y/x` = x3 is – x.


If y = y(x) is the solution of the differential equation, `(dy)/(dx) + 2ytanx = sinx, y(π/3)` = 0, then the maximum value of the function y (x) over R is equal to ______.


Let y = f(x) be a real-valued differentiable function on R (the set of all real numbers) such that f(1) = 1. If f(x) satisfies xf'(x) = x2 + f(x) – 2, then the area bounded by f(x) with x-axis between ordinates x = 0 and x = 3 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×