Advertisements
Advertisements
Question
(x + tan y) dy = sin 2y dx
Solution
We have,
\[\left( x + \tan y \right)dy = \sin 2y \text{ dx }\]
\[ \Rightarrow \frac{dx}{dy} = x\text{ cosec }2y + \frac{1}{2} \sec^2 y \]
\[ \Rightarrow \frac{dx}{dy} - x\text{ cosec }2y = \frac{1}{2} \sec^2 y . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dx}{dy} + Px = Q\]
where
\[P = -\text{ cosec }2y\]
\[Q = \frac{1}{2} \sec^2 y\]
\[ \therefore I . F . = e^{\int P dy }\]
\[ = e^{- \int \text{ cosec }\text{ 2y } dy} \]
\[ = e^{- \frac{1}{2}\log\left| \tan y \right|} = \frac{1}{\sqrt{\tan y}}\]
\[\text{ Multiplying both sides of }\left( 1 \right)\text{ by }\frac{1}{\sqrt{\tan y}},\text{ we get }\]
\[ \frac{1}{\sqrt{\tan y}}\left( \frac{dx}{dy} - x\text{ cosec }2y \right) = \frac{1}{2} \frac{1}{\sqrt{\tan y}} \times \sec^2 y\]
\[ \Rightarrow \frac{1}{\sqrt{\tan y}}\frac{dx}{dy} - x\text{ cosec }2y\frac{1}{\sqrt{\tan y}} = \frac{1}{2} \frac{1}{\sqrt{\tan y}} \times \sec^2 y \]
Integrating both sides with respect to y, we get
\[\frac{1}{\sqrt{\tan y}}x = \int \frac{1}{2} \frac{1}{\sqrt{\tan y}} \times \sec^2 \text{ y }dy + C\]
\[ \Rightarrow \frac{x}{\sqrt{\tan y}} = I + C . . . . . \left( 2 \right)\]
\[\text{ where }I = \int\frac{1}{2} \frac{1}{\sqrt{\tan y}} \times \sec^2 y dy\]
\[\text{ Putting }t = \tan y,\text{ we get }\]
\[dt = \sec^2 y dy\]
\[ \therefore I = \frac{1}{2}\int\frac{1}{\sqrt{t}} \times dt\]
\[ = \sqrt{t}\]
\[ = \sqrt{\tan y}\]
\[\text{ Putting the value of I in }\left( 2 \right),\text{ we get }\]
\[\frac{x}{\sqrt{\tan y}} = \sqrt{\tan y} + C \]
\[ \Rightarrow x = \tan y + C\sqrt{\tan y}\]
\[\text{ Hence,} x = \tan y + C\sqrt{\tan y}\text{ is the required solution .} \]
APPEARS IN
RELATED QUESTIONS
For the differential equation, find the general solution:
`dy/dx + (sec x) y = tan x (0 <= x < pi/2)`
For the differential equation, find the general solution:
`x dy/dx + 2y= x^2 log x`
For the differential equation, find the general solution:
(1 + x2) dy + 2xy dx = cot x dx (x ≠ 0)
For the differential equation, find the general solution:
y dx + (x – y2) dy = 0
For the differential equation given, find a particular solution satisfying the given condition:
`(1 + x^2)dy/dx + 2xy = 1/(1 + x^2); y = 0` when x = 1
Find the equation of the curve passing through the origin given that the slope of the tangent to the curve at any point (x, y) is equal to the sum of the coordinates of the point.
\[\frac{dy}{dx}\] = y tan x − 2 sin x
\[\frac{dy}{dx}\] + y cos x = sin x cos x
Solve the differential equation \[\left( x + 2 y^2 \right)\frac{dy}{dx} = y\], given that when x = 2, y = 1.
Find the general solution of the differential equation \[\frac{dy}{dx} - y = \cos x\]
Find the particular solution of the differential equation \[\frac{dx}{dy} + x \cot y = 2y + y^2 \cot y, y ≠ 0\] given that x = 0 when \[y = \frac{\pi}{2}\].
Solve the following differential equation: \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\] .
Solve the differential equation \[\frac{dy}{dx}\] + y cot x = 2 cos x, given that y = 0 when x = \[\frac{\pi}{2}\] .
Solve the differential equation: (1 +x2 ) dy + 2xy dx = cot x dx
Solve the differential equation: `(1 + x^2) dy/dx + 2xy - 4x^2 = 0,` subject to the initial condition y(0) = 0.
Solve the following differential equation:
`cos^2 "x" * "dy"/"dx" + "y" = tan "x"`
Solve the following differential equation:
`("x" + 2"y"^3) "dy"/"dx" = "y"`
Solve the following differential equation:
`"dy"/"dx" + "y" * sec "x" = tan "x"`
Solve the following differential equation:
`("x + a")"dy"/"dx" - 3"y" = ("x + a")^5`
Solve the following differential equation:
y dx + (x - y2) dy = 0
Solve the following differential equation:
`(1 - "x"^2) "dy"/"dx" + "2xy" = "x"(1 - "x"^2)^(1/2)`
Form the differential equation of all circles which pass through the origin and whose centers lie on X-axis.
The slope of the tangent to the curves x = 4t3 + 5, y = t2 - 3 at t = 1 is ______
Integrating factor of `dy/dx + y = x^2 + 5` is ______
Let y = y(x), x > 1, be the solution of the differential equation `(x - 1)(dy)/(dx) + 2xy = 1/(x - 1)`, with y(2) = `(1 + e^4)/(2e^4)`. If y(3) = `(e^α + 1)/(βe^α)`, then the value of α + β is equal to ______.
Let y = y(x) be a solution curve of the differential equation (y + 1)tan2xdx + tanxdy + ydx = 0, `x∈(0, π/2)`. If `lim_(x→0^+)` xy(x) = 1, then the value of `y(π/2)` is ______.
If the solution curve y = y(x) of the differential equation y2dx + (x2 – xy + y2)dy = 0, which passes through the point (1, 1) and intersects the line y = `sqrt(3) x` at the point `(α, sqrt(3) α)`, then value of `log_e (sqrt(3)α)` is equal to ______.
If sin x is the integrating factor (IF) of the linear differential equation `dy/dx + Py` = Q then P is ______.
The solution of the differential equation `dx/dt = (xlogx)/t` is ______.
The slope of tangent at any point on the curve is 3. lf the curve passes through (1, 1), then the equation of curve is ______.