English

D Y D X = Y Tan X − 2 Sin X - Mathematics

Advertisements
Advertisements

Question

\[\frac{dy}{dx}\] = y tan x − 2 sin x

Sum

Solution

We have, 
\[\frac{dy}{dx} = y \tan x - 2\sin x\]
\[\frac{dy}{dx} - y \tan x = - 2\sin x . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form 
\[\frac{dy}{dx} + Py = Q\]
where
\[P = - \tan x\]
\[Q = - 2\sin x\]
\[ \therefore I.F. = e^{\int P\ dx} \]
\[ = e^{- \int\tan x dx} \]
\[ = e^{- \log\left| \sec x \right|} = \cos x\]
\[\text{Multiplying both sides of }\left( 1 \right)\text{ by }\cos x, \text{ we get }\]
\[\cos x \left( \frac{dy}{dx} - y\tan x \right) = - 2\sin x \times \cos x\]
\[ \Rightarrow \cos x\frac{dy}{dx} + y\sin x = - \sin 2x\]
Integrating both sides with respect to x, we get
\[y \cos x = - \int\sin \text{ 2x } dx + C\]
\[ \Rightarrow y \cos x = \frac{\cos 2x}{2} + C\]
\[ \Rightarrow y \cos x = \frac{1 - 2 \sin^2 x}{2} + C\]
\[ \Rightarrow y \cos x = - \sin^2 x + \frac{1}{2} + C\]
\[ \Rightarrow y \cos x = - \sin^2 x + K ...............\left(\text{where }k = \frac{1}{2} + C \right)\]
\[ \Rightarrow y = \sec x\left( - \sin^2 x + K \right)\]
\[\text{Hence, }y = \sec x\left( - \sin^2 x + K \right)\text{ is the required solution.}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.10 [Page 106]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.10 | Q 27 | Page 106

RELATED QUESTIONS

For the differential equation, find the general solution:

`dy/dx + 3y = e^(-2x)`


For the differential equation, find the general solution:

`dy/dx + (sec x) y = tan x (0 <= x < pi/2)`


For the differential equation, find the general solution:

`cos^2 x dy/dx + y = tan x(0 <= x < pi/2)`


For the differential equation, find the general solution:

`x log x dy/dx + y=    2/x log x`


For the differential equation, find the general solution:

y dx + (x – y2) dy = 0


For the differential equation given, find a particular solution satisfying the given condition:

`dy/dx + 2y tan x = sin x; y = 0 " when x " = pi/3`


For the differential equation given, find a particular solution satisfying the given condition:

`(1 + x^2)dy/dx + 2xy = 1/(1 + x^2); y = 0`  when x = 1


For the differential equation given, find a particular solution satisfying the given condition:

`dy/dx - 3ycotx = sin 2x; y = 2`  when `x = pi/2`


The Integrating Factor of the differential equation `dy/dx - y = 2x^2` is ______.


\[\frac{dy}{dx} + y \tan x = x^2 \cos^2 x\]

\[\left( 2x - 10 y^3 \right)\frac{dy}{dx} + y = 0\]

(x + tan y) dy = sin 2y dx


\[\frac{dy}{dx}\] + y cos x = sin x cos x


\[\left( x^2 - 1 \right)\frac{dy}{dx} + 2\left( x + 2 \right)y = 2\left( x + 1 \right)\]

\[\frac{dy}{dx} - y = x e^x\]

\[\frac{dy}{dx} + 2y = x e^{4x}\]

Solve the differential equation \[\left( y + 3 x^2 \right)\frac{dx}{dy} = x\]


Find the particular solution of the differential equation \[\frac{dx}{dy} + x \cot y = 2y + y^2 \cot y, y ≠ 0\] given that x = 0 when \[y = \frac{\pi}{2}\].


Solve the following differential equation: \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\] .


Find the integerating factor of the differential equation `xdy/dx - 2y = 2x^2` . 


Solve the differential equation: (1 +x) dy + 2xy dx = cot x dx 


If f(x) = x + 1, find `"d"/"dx"("fof") ("x")`


Solve the differential equation: `(1 + x^2) dy/dx + 2xy - 4x^2 = 0,` subject to the initial condition y(0) = 0.


Solve the following differential equation:

`("x + y") "dy"/"dx" = 1`


Solve the following differential equation:

`(1 + "x"^2) "dy"/"dx" + "y" = "e"^(tan^-1 "x")`


Find the equation of the curve which passes through the origin and has the slope x + 3y - 1 at any point (x, y) on it.


Find the equation of the curve passing through the point `(3/sqrt2, sqrt2)` having a slope of the tangent to the curve at any point (x, y) is -`"4x"/"9y"`.


Form the differential equation of all circles which pass through the origin and whose centers lie on X-axis.


`(x + 2y^3 ) dy/dx = y`


The integrating factor of the differential equation sin y `("dy"/"dx")` = cos y(1 - x cos y) is ______.


The slope of the tangent to the curves x = 4t3 + 5, y = t2 - 3 at t = 1 is ______


Integrating factor of `dy/dx + y = x^2 + 5` is ______ 


Which of the following is a second order differential equation?


Let y = y(x) be a solution curve of the differential equation (y + 1)tan2xdx + tanxdy + ydx = 0, `x∈(0, π/2)`. If `lim_(x→0^+)` xy(x) = 1, then the value of `y(π/2)` is ______.


Let y = y(x) be the solution curve of the differential equation `(dy)/(dx) + ((2x^2 + 11x + 13)/(x^3 + 6x^2 + 11x + 6)) y = ((x + 3))/(x + 1), x > - 1`, which passes through the point (0, 1). Then y(1) is equal to ______.


If the solution curve y = y(x) of the differential equation y2dx + (x2 – xy + y2)dy = 0, which passes through the point (1, 1) and intersects the line y = `sqrt(3)  x` at the point `(α, sqrt(3) α)`, then value of `log_e (sqrt(3)α)` is equal to ______.


The slope of the tangent to the curve x = sin θ and y = cos 2θ at θ = `π/6` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×